1000 resultados para SISTEMA GENERAL DE PENSIONES – COLOMBIA – MODELOS ECONOMÉTRICOS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho tem como objetivo avaliar a capacidade preditiva de modelos econométricos de séries de tempo baseados em indicadores macroeconômicos na previsão da inflação brasileira (IPCA). Os modelos serão ajustados utilizando dados dentro da amostra e suas projeções ex-post serão acumuladas de um a doze meses à frente. As previsões serão comparadas a de modelos univariados como autoregressivo de primeira ordem - AR(1) - que nesse estudo será o benchmark escolhido. O período da amostra vai de janeiro de 2000 até agosto de 2015 para ajuste dos modelos e posterior avaliação. Ao todo foram avaliadas 1170 diferentes variáveis econômicas a cada período a ser projetado, procurando o melhor conjunto preditores para cada ponto no tempo. Utilizou-se o algoritmo Autometrics para a seleção de modelos. A comparação dos modelos foi feita através do Model Confidence Set desenvolvido por Hansen, Lunde e Nason (2010). Os resultados obtidos nesse ensaio apontam evidências de ganhos de desempenho dos modelos multivariados para períodos posteriores a 1 passo à frente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O principal objetivo deste projeto foi propor um sistema de aquisição de dados de uma aplicação remota. Existem diversas aplicações que requerem a recolha de informação remota, sendo, para isso, necessário estabelecer um sistema de comunicação dedicado. Este trabalho procurou encontrar as melhores soluções para o problema em causa, testando e avaliado um sistema de comunicação. Para testar o sistema foi desenvolvido um protótipo de monotorização de parâmetros ambientais, que mede periodicamente os valores de temperatura, humidade, luminosidade e pressão atmosférica. A comunicação entre sensores foi realizada com recurso a rádios XBee com protocolo Zigbee. Foi, também, desenvolvido um nó de coordenação que tem como objetivo principal gerir e manter todo o sistema de aquisição de dados. Este protótipo recebe, valida e armazena num cartão SD todos os dados provenientes do nó sensor e periodicamente envia os dados para um servidor com acesso a internet. A aquisição de dados em aplicações remotas, normalmente, é efetuada em zonas de ausência de energia elétrica. Então, tendo em consideração a capacidade reduzida dos sistemas de armazenamento de energia, foram desenvolvidos sistemas de alimentação através de energia solar, focando-se no mínimo de consumo possível. Para a comunicação de longa distância foi implementado e testado um sistema de feixes hertzianos. Estudou-se a propagação, utilizando a banda isenta de licença dos 2,4 GHz. Projetou-se uma ligação entre dois pontos e procedeu-se à validação das áreas de cobertura, a qual requer a estimação do sinal nos pontos de interesse. Verificou-se as zonas de interferência e as zonas onde o sinal é fraco ou está no seu limite. O desenvolvimento deste sistema de comunicação foi fundamentado com a análise e avaliação dos modelos de propagação, juntamente com o software criado em plataforma Matlab. Finalmente foram apresentadas as conclusões e algumas sugestões de trabalhos futuros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los modelos de desarrollo regional, rural y urbano arrancaron en la década de los 90 en Estados Unidos, modelando los factores relacionados con la economía que suministran información y conocimiento acerca de cómo los parámetros geográficos y otros externos influencian la economía regional. El desarrollo regional y en particular el rural han seguido diferentes caminos en Europa y España, adoptando como modelo los programas estructurales de la UE ligados a la PAC. El Programa para el Desarrollo Rural Sostenible, recientemente lanzado por el Gobierno de España (2010) no profundiza en los modelos económicos de esta economía y sus causas. Este estudio pretende encontrar pautas de comportamiento de las variables de la economía regional-rural, y como el efecto de distribución geográfica de la población condiciona la actividad económica. Para este propósito, y utilizando datos espaciales y económicos de las regiones, se implementaran modelos espaciales que permitan evaluar el comportamiento económico, y verificar hipótesis de trabajo sobre la geografía y la economía del territorio. Se utilizarán modelos de análisis espacial como el análisis exploratorio espacial y los modelos econométricos de ecuaciones simultáneas, y dentro de estas los modelos ampliamente utilizados en estudios regionales de Carlino-Mills- Boarnet. ABSTRACT The regional development models for rural and urban areas started in USA in the ´90s, modeling the economy and the factors involved to understand and collect the knowledge of how the external parameters influenced the regional economy. Regional development and in particular rural development has followed different paths in Europe and Spain, adopting structural programs defined in the EU Agriculture Common Policy. The program for Sustainable Rural Development recently implemented in Spain (2010) is short sighted considering the effects of the regional economy. This study endeavors to underline models of behavior for the rural and regional economy variables, and how the regional distribution of population conditions the economic activities. For that purpose using current spatial regional economic data, this study will implement spatial economic models to evaluate the behavior of the regional economy, including the evaluation of working hypothesis about geography and economy in the territory. The approach will use data analysis models, like exploratory spatial data analysis, and spatial econometric models, and in particular for its wide acceptance in regional analysis, the Carlino-Mills-Boarnet equations model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante la actividad diaria, la sociedad actual interactúa constantemente por medio de dispositivos electrónicos y servicios de telecomunicaciones, tales como el teléfono, correo electrónico, transacciones bancarias o redes sociales de Internet. Sin saberlo, masivamente dejamos rastros de nuestra actividad en las bases de datos de empresas proveedoras de servicios. Estas nuevas fuentes de datos tienen las dimensiones necesarias para que se puedan observar patrones de comportamiento humano a grandes escalas. Como resultado, ha surgido una reciente explosión sin precedentes de estudios de sistemas sociales, dirigidos por el análisis de datos y procesos computacionales. En esta tesis desarrollamos métodos computacionales y matemáticos para analizar sistemas sociales por medio del estudio combinado de datos derivados de la actividad humana y la teoría de redes complejas. Nuestro objetivo es caracterizar y entender los sistemas emergentes de interacciones sociales en los nuevos espacios tecnológicos, tales como la red social Twitter y la telefonía móvil. Analizamos los sistemas por medio de la construcción de redes complejas y series temporales, estudiando su estructura, funcionamiento y evolución en el tiempo. También, investigamos la naturaleza de los patrones observados por medio de los mecanismos que rigen las interacciones entre individuos, así como medimos el impacto de eventos críticos en el comportamiento del sistema. Para ello, hemos propuesto modelos que explican las estructuras globales y la dinámica emergente con que fluye la información en el sistema. Para los estudios de la red social Twitter, hemos basado nuestros análisis en conversaciones puntuales, tales como protestas políticas, grandes acontecimientos o procesos electorales. A partir de los mensajes de las conversaciones, identificamos a los usuarios que participan y construimos redes de interacciones entre los mismos. Específicamente, construimos una red para representar quién recibe los mensajes de quién y otra red para representar quién propaga los mensajes de quién. En general, hemos encontrado que estas estructuras tienen propiedades complejas, tales como crecimiento explosivo y distribuciones de grado libres de escala. En base a la topología de estas redes, hemos indentificado tres tipos de usuarios que determinan el flujo de información según su actividad e influencia. Para medir la influencia de los usuarios en las conversaciones, hemos introducido una nueva medida llamada eficiencia de usuario. La eficiencia se define como el número de retransmisiones obtenidas por mensaje enviado, y mide los efectos que tienen los esfuerzos individuales sobre la reacción colectiva. Hemos observado que la distribución de esta propiedad es ubicua en varias conversaciones de Twitter, sin importar sus dimensiones ni contextos. Con lo cual, sugerimos que existe universalidad en la relación entre esfuerzos individuales y reacciones colectivas en Twitter. Para explicar los factores que determinan la emergencia de la distribución de eficiencia, hemos desarrollado un modelo computacional que simula la propagación de mensajes en la red social de Twitter, basado en el mecanismo de cascadas independientes. Este modelo nos permite medir el efecto que tienen sobre la distribución de eficiencia, tanto la topología de la red social subyacente, como la forma en que los usuarios envían mensajes. Los resultados indican que la emergencia de un grupo selecto de usuarios altamente eficientes depende de la heterogeneidad de la red subyacente y no del comportamiento individual. Por otro lado, hemos desarrollado técnicas para inferir el grado de polarización política en redes sociales. Proponemos una metodología para estimar opiniones en redes sociales y medir el grado de polarización en las opiniones obtenidas. Hemos diseñado un modelo donde estudiamos el efecto que tiene la opinión de un pequeño grupo de usuarios influyentes, llamado élite, sobre las opiniones de la mayoría de usuarios. El modelo da como resultado una distribución de opiniones sobre la cual medimos el grado de polarización. Aplicamos nuestra metodología para medir la polarización en redes de difusión de mensajes, durante una conversación en Twitter de una sociedad políticamente polarizada. Los resultados obtenidos presentan una alta correspondencia con los datos offline. Con este estudio, hemos demostrado que la metodología propuesta es capaz de determinar diferentes grados de polarización dependiendo de la estructura de la red. Finalmente, hemos estudiado el comportamiento humano a partir de datos de telefonía móvil. Por una parte, hemos caracterizado el impacto que tienen desastres naturales, como innundaciones, sobre el comportamiento colectivo. Encontramos que los patrones de comunicación se alteran de forma abrupta en las áreas afectadas por la catástofre. Con lo cual, demostramos que se podría medir el impacto en la región casi en tiempo real y sin necesidad de desplegar esfuerzos en el terreno. Por otra parte, hemos estudiado los patrones de actividad y movilidad humana para caracterizar las interacciones entre regiones de un país en desarrollo. Encontramos que las redes de llamadas y trayectorias humanas tienen estructuras de comunidades asociadas a regiones y centros urbanos. En resumen, hemos mostrado que es posible entender procesos sociales complejos por medio del análisis de datos de actividad humana y la teoría de redes complejas. A lo largo de la tesis, hemos comprobado que fenómenos sociales como la influencia, polarización política o reacción a eventos críticos quedan reflejados en los patrones estructurales y dinámicos que presentan la redes construidas a partir de datos de conversaciones en redes sociales de Internet o telefonía móvil. ABSTRACT During daily routines, we are constantly interacting with electronic devices and telecommunication services. Unconsciously, we are massively leaving traces of our activity in the service providers’ databases. These new data sources have the dimensions required to enable the observation of human behavioral patterns at large scales. As a result, there has been an unprecedented explosion of data-driven social research. In this thesis, we develop computational and mathematical methods to analyze social systems by means of the combined study of human activity data and the theory of complex networks. Our goal is to characterize and understand the emergent systems from human interactions on the new technological spaces, such as the online social network Twitter and mobile phones. We analyze systems by means of the construction of complex networks and temporal series, studying their structure, functioning and temporal evolution. We also investigate on the nature of the observed patterns, by means of the mechanisms that rule the interactions among individuals, as well as on the impact of critical events on the system’s behavior. For this purpose, we have proposed models that explain the global structures and the emergent dynamics of information flow in the system. In the studies of the online social network Twitter, we have based our analysis on specific conversations, such as political protests, important announcements and electoral processes. From the messages related to the conversations, we identify the participant users and build networks of interactions with them. We specifically build one network to represent whoreceives- whose-messages and another to represent who-propagates-whose-messages. In general, we have found that these structures have complex properties, such as explosive growth and scale-free degree distributions. Based on the topological properties of these networks, we have identified three types of user behavior that determine the information flow dynamics due to their influence. In order to measure the users’ influence on the conversations, we have introduced a new measure called user efficiency. It is defined as the number of retransmissions obtained by message posted, and it measures the effects of the individual activity on the collective reacixtions. We have observed that the probability distribution of this property is ubiquitous across several Twitter conversation, regardlessly of their dimension or social context. Therefore, we suggest that there is a universal behavior in the relationship between individual efforts and collective reactions on Twitter. In order to explain the different factors that determine the user efficiency distribution, we have developed a computational model to simulate the diffusion of messages on Twitter, based on the mechanism of independent cascades. This model, allows us to measure the impact on the emergent efficiency distribution of the underlying network topology, as well as the way that users post messages. The results indicate that the emergence of an exclusive group of highly efficient users depends upon the heterogeneity of the underlying network instead of the individual behavior. Moreover, we have also developed techniques to infer the degree of polarization in social networks. We propose a methodology to estimate opinions in social networks and to measure the degree of polarization in the obtained opinions. We have designed a model to study the effects of the opinions of a small group of influential users, called elite, on the opinions of the majority of users. The model results in an opinions distribution to which we measure the degree of polarization. We apply our methodology to measure the polarization on graphs from the messages diffusion process, during a conversation on Twitter from a polarized society. The results are in very good agreement with offline and contextual data. With this study, we have shown that our methodology is capable of detecting several degrees of polarization depending on the structure of the networks. Finally, we have also inferred the human behavior from mobile phones’ data. On the one hand, we have characterized the impact of natural disasters, like flooding, on the collective behavior. We found that the communication patterns are abruptly altered in the areas affected by the catastrophe. Therefore, we demonstrate that we could measure the impact of the disaster on the region, almost in real-time and without needing to deploy further efforts. On the other hand, we have studied human activity and mobility patterns in order to characterize regional interactions on a developing country. We found that the calls and trajectories networks present community structure associated to regional and urban areas. In summary, we have shown that it is possible to understand complex social processes by means of analyzing human activity data and the theory of complex networks. Along the thesis, we have demonstrated that social phenomena, like influence, polarization and reaction to critical events, are reflected in the structural and dynamical patterns of the networks constructed from data regarding conversations on online social networks and mobile phones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una red inalámbrica de sensores (Wireless Sensor Network, WSN) constituye un sistema de comunicación de datos flexible utilizado como alternativa a las redes cableadas o como extensión de éstas. Una de las aplicaciones de estas redes es para su uso en sistemas de predicción y prevención de incendios en áreas naturales. Su implementación se basa en el despliegue de sensores inalámbricos, realizado en una zona de riesgo de incendio que puedan recolectar información tal como temperatura, humedad y presión. Desde una estación base (o nodo "sumidero"), se suministra la información de los sensores a un centro de monitorización y control de forma estructurada. En estos centros la información recibida puede ser analizada, procesada y visualizada en tiempo real. Desde este centro de control se puede controlar también la red WSN modificando el comportamiento de los sensores según el nivel de riesgo de incendio detectado. Este proyecto se basa en el diseño, desarrollo e implementación de un Sistema de Control y Visualización de Información sobre Riesgo de Incendio (SCVIRI), que implementa las funciones de los centros de monitorización y control. La implementación de este sistema, junto con el desarrollado, en paralelo, de otro proyecto denominado Sistema de Estimación de Riesgo de Incendio Utilizando una WSN (SERIUW) que implementa la emulación de la red WSN, conforman un sistema general de anticipación y seguimiento de Fuegos. Se han realizado pruebas de funcionalidad y eficacia, incluidas en la presente memoria del sistema general (ambos proyectos), en un entorno controlado simulado. Este sistema es una solución para la lucha contra los incendios forestales ya que predice y previene, de forma temprana, posibles incendios en las áreas naturales bajo supervisión. Ante un evento de incendio declarado este sistema es un poderoso instrumento de apoyo permitiendo, por un lado, generar alertas automáticas (con localización y gravedad de fuegos detectados) y por el otro, hacer un seguimiento del incendio con mapas en tiempo real (con su consecuente apoyo para la protección e información con las brigadas de bomberos en las zonas activas). ABSTRACT. A wireless sensor network (WSN) is a flexible data communication system used as an alternative to wired networks or as an extension of them. One possible application of these networks is related to fire prediction and prevention in natural areas. Its implementation is based on a deployment of wireless sensors, in an area with high or moderate fire risk, to collect information such as temperature, humidity, luminance and pressure. A base station (or "sink") sends the collected information to a monitoring and control center according to an agreed structured format. At this center, the information received can be analyzed, processed and displayed in real time by using monitoring systems. From this control center the WSN can also be controlled by changing the sensors behavior in consistence with the detected level of fire risk. The work carried out in this project consists on the design, development and implementation of a system named SCVIRI, which implements the functions of the aforementioned monitoring and control center. This system works in connection with other one, called SERIUW, which has been developed in a different project and implements the WSN in an emulated environment. These two systems working together make up a general system of anticipation and monitoring of fires. This document also includes the functionality and performance tests performed on the overall system in a controlled and simulated environment. The global system is a solution that makes it easier to predict and prevent possible fires in natural areas under supervision. This system can be a powerful tool since, before a fire event is declared, it generates automatic alerts (including location and severity information) and allows the real-time motorization of fire evolution and its graphical visualization on maps. This could be also very useful for providing fire brigades with support, protection and information in zones in which a fire is already active.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os controladores eletrônicos de pulverização visam minimizar a variação das taxas de insumos aplicadas no campo. Eles fazem parte de um sistema de controle, e permitem a compensação da variação de velocidade de deslocamento do pulverizador durante a operação. Há vários tipos de controladores eletrônicos de pulverização disponíveis no mercado e uma das formas de selecionar qual o mais eficiente nas mesmas condições, ou seja, em um mesmo sistema de controle, é quantificar o tempo de resposta do sistema para cada controlador específico. O objetivo desse trabalho foi estimar os tempos de resposta para mudanças de velocidade de um sistema eletrônico de pulverização via modelos de regressão não lineares, estes, resultantes da soma de regressões lineares ponderadas por funções distribuição acumulada. Os dados foram obtidos no Laboratório de Tecnologia de Aplicação, localizado no Departamento de Engenharia de Biossistemas da Escola Superior de Agricultura \"Luiz de Queiroz\", Universidade de São Paulo, no município de Piracicaba, São Paulo, Brasil. Os modelos utilizados foram o logístico e de Gompertz, que resultam de uma soma ponderada de duas regressões lineares constantes com peso dado pela função distribuição acumulada logística e Gumbell, respectivamente. Reparametrizações foram propostas para inclusão do tempo de resposta do sistema de controle nos modelos, com o objetivo de melhorar a interpretação e inferência estatística dos mesmos. Foi proposto também um modelo de regressão não linear difásico que resulta da soma ponderada de regressões lineares constantes com peso dado pela função distribuição acumulada Cauchy seno hiperbólico exponencial. Um estudo de simulação foi feito, utilizando a metodologia de Monte Carlo, para avaliar as estimativas de máxima verossimilhança dos parâmetros do modelo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo del trabajo consiste en analizar la eficiencia de las empresas que integran una marca colectiva en una industria productora de bienes de experiencia. El supuesto básico es que la marca colectiva tiene un impacto positivo en la eficiencia de las empresas acogidas a la misma, el cual viene explicado porque la reputación colectiva fomenta una inversión eficiente en calidad. Sin embargo, la marca colectiva también puede tener un efecto opuesto sobre los incentivos de una empresa a una inversión en calidad ya que dicha marca puede crear un incentivo a “free ride”. Nuestra propuesta defiende que la interacción entre estos factores opuestos, reputación colectiva y “free ride”, viene moderada por las características de la marca colectiva y de la propia empresa. La metodología aplicada en el contraste de estas hipótesis se apoya en el Análisis Envolvente de Datos para estimar la eficiencia, así como en modelos econométricos para explicar la eficiencia empresarial mediante características de la marca colectiva y de la empresa. Los resultados obtenidos en el ámbito de las bodegas españolas evidencian que las marcas colectivas tienen un impacto positivo sobre la eficiencia, el cual viene moderado por el tamaño de la marca colectiva generando una relación curvilínea en forma de U invertida. Adicionalmente, el volumen de producción de la marca colectiva y el tamaño de las bodegas ejercen un efecto moderador en el impacto del tamaño de la marca colectiva sobre la eficiencia. En general, los resultados ponen de manifiesto la importancia de las marcas colectivas cuando se investigan industrias donde la calidad no es solamente señalizada por una marca típica individual.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un argumento conocido es que las tecnologías de la información y las comunicaciones (TIC) han creado una brecha digital creciente entre las economías maduras y la de los países de menor desarrollo relativo. A su vez, se plantea con carácter de paradigma, que esta tendencia podría revertirse con la incorporación de incentivos al desarrollo local de industrias TIC en los países menos desarrollados. En los últimos años muchos gobiernos de países en vías de industrialización prestan creciente atención al desarrollo de industrias TIC en sus territorios. En esa promoción se observa, sin embargo, la persistencia de un viejo debate sobre las opciones de aplicar un fuerte “impulso masivo”, o impulsos “hacia adelante” y “hacia atrás”. Por ello resulta de gran interés el estudio de casos exitosos de desarrollo local de empresas TIC que permitan interpretar la naturaleza de las políticas de promoción y el impacto en cuanto a: (i) generación y fortalecimiento de eslabonamientos, con los proveedores, por un lado, y con la demanda, por el otro, (ii) diferenciación según el carácter nacional o multinacional de las empresas impulsoras, (iii) papel de las universidades e institutos de investigación, (iv) efectos sobre la generación de empleo directo e indirecto. Esta propuesta asume que existe la necesidad de comprender mejor el impacto del desarrollo local de ofertas TIC, la interrelación entre firmas locales, firmas locales y multinacionales y entre todas estas, y la capacidad doméstica de investigación, desarrollo e inversión. Un corpus de conocimiento de esta naturaleza es indispensable para que los responsables puedan diseñar las políticas públicas de incentivos adecuadas para generar los estímulos apropiados y contribuir al fortalecimiento del sector. Bajo este enfoque, es que el objetivo general del proyecto es investigar el impacto, en Córdoba, del paradigma TIC en la generación de una oferta local de firmas que elaboran productos y desarrollan servicios TIC, a partir de decisiones empresariales independientes, o como parte de una cadena productiva en la cual interviene una variedad de firmas locales e internacionales. La investigación estará centrada, por una parte, en el estudio de la evolución de los ordenamientos institucionales y legales para la promoción del sector TIC en el país y en Córdoba, y, por la otra, se focalizará en el análisis de los datos de fuente primaria sobre las firmas radicadas en el Gran Córdoba, que elaboran productos y desarrollan servicios TIC. El abordaje conjunto de ambos planos de análisis, permitirá contrastar la principal hipótesis de investigación que postula que, si se proveen entornos adecuados, orientados a facilitar los medios para superar las restricciones económicas, sociales, legales e institucionales, es posible lograr el desarrollo de cadenas productivas de firmas TIC, que generan impacto positivo en el medio local principalmente el empleo - e integran a firmas domésticas y multinacionales, a centros de investigación, e incluso, a organizaciones de consumidores. Una segunda hipótesis a ser contratada en el trabajo, es que el desarrollo TIC en la provincia de Córdoba respondió a una estrategia de fuerte impulso masivo y servirá como evidencia empírica que contribuya al debate teórico sobre el tema. En la metodología se prevé realizar una recopilación de datos de fuentes secundarias del sector público y privado, a partir de la cual se elaborará un marco general para llevar a cabo la recolección de datos de fuentes primarias, mediante un conjunto de entrevistas en profundidad a informantes calificados y una encuesta a empresas TIC, nacionales y multinacionales, radicadas en el Gran Córdoba. El tratamiento y análisis de los datos comprenderá la elaboración de tablas, gráficos y cálculo de correlaciones e indicadores descriptivos, como así también la aplicación de modelos econométricos de riesgo y de supervivencia con fines predictivos. Los procesamientos se realizarán con el soft STATA.