938 resultados para SINGLE NUCLEOTIDE POLYMORPHISMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Single-nucleotide polymorphisms in genes involved in lipoprotein and adipocyte metabolism may explain why dyslipidemia and lipoatrophy occur in some but not all antiretroviral therapy (ART)-treated individuals. METHODS: We evaluated the contribution of APOC3 -482C-->T, -455T-->C, and 3238C-->G; epsilon 2 and epsilon 4 alleles of APOE; and TNF -238G-->A to dyslipidemia and lipoatrophy by longitudinally modeling >2600 lipid determinations and 2328 lipoatrophy assessments in 329 ART-treated patients during a median follow-up period of 3.4 years. RESULTS: In human immunodeficiency virus (HIV)-infected individuals, the effects of variant alleles of APOE on plasma cholesterol and triglyceride levels and of APOC3 on plasma triglyceride levels were comparable to those reported in the general population. However, when treated with ritonavir, individuals with unfavorable genotypes of APOC3 and [corrected] APOE were at risk of extreme hypertriglyceridemia. They had median plasma triglyceride levels of 7.33 mmol/L, compared with 3.08 mmol/L in the absence of ART. The net effect of the APOE*APOC3*ritonavir interaction was an increase in plasma triglyceride levels of 2.23 mmol/L. No association between TNF -238G-->A and lipoatrophy was observed. CONCLUSIONS: Variant alleles of APOE and APOC3 contribute to an unfavorable lipid profile in patients with HIV. Interactions between genotypes and ART can lead to severe hyperlipidemia. Genetic analysis may identify patients at high risk for severe ritonavir-associated hypertriglyceridemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HLA-B 5701 allele is predictive of hypersensitivity reaction to abacavir, a response herein termed "ABC-HSR." This study of 1,103 individuals infected with human immunodeficiency virus assessed the usefulness of genotyping a HCP5 single-nucleotide polymorphism (SNP), rs2395029, in relation to ABC-HSR. In populations with European ancestry, rs2395029 is in linkage disequilibrium with HLA-B 5701. The HCP5 SNP was present in all 98 HLA-B 5701-positive individuals and was absent in 999 of 1005 HLA-B 5701-negative individuals. rs2395029 was overrepresented in 25 individuals with clinically likely ABC-HSR, compared with its frequency in 175 ABC-tolerant individuals (80% vs. 2%, respectively; P < .0001). Therefore, HCP5 genotyping could serve as a simple screening tool for ABC-HSR, particularly in settings where sequence-based HLA typing is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up to 60% of U.S. visitors to Mexico develop traveler's diarrhea (TD), mostly due to enterotoxigenic Escherichia coli (ETEC) strains that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Distinct single-nucleotide polymorphisms (SNPs) within the interleukin-10 (IL-10) promoter have been associated with high, intermediate, or low production of IL-10. We conducted a prospective study to investigate the association of SNPs in the IL-10 promoter and the occurrence of TD in ETEC LT-exposed travelers. Sera from U.S. travelers to Mexico collected on arrival and departure were studied for ETEC LT seroconversion by using cholera toxin as the antigen. Pyrosequencing was performed to genotype IL-10 SNPs. Stools from subjects who developed diarrhea were also studied for other enteropathogens. One hundred twenty-one of 569 (21.3%) travelers seroconverted to ETEC LT, and among them 75 (62%) developed diarrhea. Symptomatic seroconversion was more commonly seen in subjects who carried a genotype producing high levels of IL-10; it was seen in 83% of subjects with the GG genotype versus 54% of subjects with the AA genotype at IL-10 gene position -1082 (P, 0.02), in 71% of those with the CC genotype versus 33% of those with the TT genotype at position -819 (P, 0.005), and in 71% of those with the CC genotype versus 38% of those with the AA genotype at position -592 (P, 0.02). Travelers with the GCC haplotype were more likely to have symptomatic seroconversion than those with the ATA haplotype (71% versus 38%; P, 0.002). Travelers genetically predisposed to produce high levels of IL-10 were more likely to experience symptomatic ETEC TD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND  Whole genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single nucleotide polymorphism (SNP)-typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS  Based on genome sequences of three historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1,642 patient isolates, and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS  We identified 68 patients associated with the outbreak strain. Most were diagnosed in 1991-1995, but cases were observed until 2011. Two thirds belonged to the homeless and substance abuser milieu. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into three sub-clusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS  Strain-specific SNP-genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real-time and at high resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND  Single nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell (HSCT) but not solid organ transplant (SOT) recipients. METHODS  24 SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidneys, 190 liver, 102 lungs, 79 hearts, 15 other) from the Swiss Transplant Cohort Study. Association between SNPs and the endpoint were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by ELISA in PBMCs from healthy volunteers and correlated with relevant genotypes. RESULTS  Mold colonization (N=45) and proven/probable IMI (N=26) were associated with polymorphisms in interleukin-1 beta (IL1B, rs16944; log-rank test, recessive mode, colonization P=0.001 and IMI P=0.00005), interleukin-1 receptor antagonist (IL1RN, rs419598; P=0.01 and P=0.02) and β-defensin-1 (DEFB1, rs1800972; P=0.001 and P=0.0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (IL1B rs16944 P=0.002; DEFB1 rs1800972 P=0.01). Presence of two copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced IL-1β and TNFα secretion by PBMCs. CONCLUSIONS  Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Pinschers and other dogs with coat color dilution show a characteristic pigmentation phenotype. The fur colors are a lighter shade, e.g. silvery grey (blue) instead of black and a sandy color (Isabella fawn) instead of red or brown. In some dogs the coat color dilution is sometimes accompanied by hair loss and recurrent skin inflammation, the so called color dilution alopecia (CDA) or black hair follicular dysplasia (BHFD). In humans and mice a comparable pigmentation phenotype without any documented hair loss is caused by mutations within the melanophilin gene (MLPH). RESULTS We sequenced the canine MLPH gene and performed a mutation analysis of the MLPH exons in 6 Doberman Pinschers and 5 German Pinschers. A total of 48 sequence variations was identified within and between the breeds. Three families of dogs showed co-segregation for at least one polymorphism in an MLPH exon and the dilute phenotype. No single polymorphism was identified in the coding sequences or at splice sites that is likely to be causative for the dilute phenotype of all dogs examined. In 18 German Pinschers a mutation in exon 7 (R199H) was consistently associated with the dilute phenotype. However, as this mutation was present in homozygous state in four dogs of other breeds with wildtype pigmentation, it seems unlikely that this mutation is truly causative for coat color dilution. In Doberman Pinschers as well as in Large Munsterlanders with BHFD, a set of single nucleotide polymorphisms (SNPs) around exon 2 was identified that show a highly significant association to the dilute phenotype. CONCLUSION This study provides evidence that coat color dilution is caused by one or more mutations within or near the MLPH gene in several dog breeds. The data on polymorphisms that are strongly associated with the dilute phenotype will allow the genetic testing of Pinschers to facilitate the breeding of dogs with defined coat colors and to select against Large Munsterlanders carrying BHFD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. METHODS The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. CONCLUSIONS In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of genetic polymorphisms in pediatric brain tumor (PBT) etiology is poorly understood. We hypothesized that single nucleotide polymorphisms (SNPs) identified in genome-wide association studies (GWAS) on adult glioma would also be associated with PBT risk. The study is based on the Cefalo study, a population-based multicenter case-control study. Saliva DNA from 245 cases and 489 controls, aged 7-19 years at diagnosis/reference date, was extracted and genotyped for 29 SNPs reported by GWAS to be significantly associated with risk of adult glioma. Data were analyzed using unconditional logistic regression. Stratified analyses were performed for two histological subtypes: astrocytoma alone and the other tumor types combined. The results indicated that four SNPs, CDKN2BAS rs4977756 (p = 0.036), rs1412829 (p = 0.037), rs2157719 (p = 0.018) and rs1063192 (p = 0.021), were associated with an increased susceptibility to PBTs, whereas the TERT rs2736100 was associated with a decreased risk (p = 0.018). Moreover, the stratified analyses showed a decreased risk of astrocytoma associated with RTEL1 rs6089953, rs6010620 and rs2297440 (p trend = 0.022, p trend = 0.042, p trend = 0.029, respectively) as well as an increased risk of this subtype associated with RTEL1 rs4809324 (p trend = 0.033). In addition, SNPs rs10464870 and rs891835 in CCDC26 were associated with an increased risk of non-astrocytoma tumor subtypes (p trend = 0.009, p trend = 0.007, respectively). Our findings indicate that SNPs in CDKN2BAS, TERT, RTEL1 and CCDC26 may be associated with the risk of PBTs. Therefore, we suggest that pediatric and adult brain tumors might share common genetic risk factors and similar etiological pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing incidence of oral squamous cell carcinoma (OSCC) among young adults has been associated with sexually transmitted infection of human papillomavirus (HPV), particularly HPV16. Given the roles of p21 (WAF1/Cip1/CDKN1A) and p27 (Kip1/CDKNIB) in cell-cycle regulation and of HPV16 E6 and E7 oncoproteins in p53 degradation and pRb inactivation, the effect of HPV16 L1 seropositivity and three putatively functional single-nucleotide polymorphisms (SNPs) of p21 (p21 C70T and p21 C98A) and p27 (p27 T109G), individually and in combination, on the risk of OSCC was evaluated in a hospital-based case-control study of 327 cases and 401 cancer-free controls who were frequency-matched on age, gender and smoking status. Individuals with HPV16 L1 seropositivity had an overall 3-fold increased risk of having OSCC than those with HPV16 seronegativity. The increased risk of HPV16-associated OSCC was particularly found among younger people (aged ≤ 50 years), males, never smokers, never drinkers and oropharynx cancer patients. None of three p21 and p27 polymorphisms alone was significantly associated with risk of OSCC. Individuals with variant genotypes for both p21 polymorphisms were more likely to have OSCC than individuals with wild-type genotypes or variant genotypes for either one of the p21 polymorphisms (adjusted OR, 1.4; 95% CI, 0.9-2.1). There was a borderline significant or significant interaction between the p21 C70T, combined p21 and combined p21/p27 genotypes and HPV16 L1 seropositivity on risk of OSCC. The three studied p21 and p27 polymorphisms, individually or in combination, did not appear to have an effect on HPV16-related clinical outcomes (overall and disease-free survival and tumor recurrence). Despite the fact that the exact biological mechanism remains to be explored, these findings suggest possible involvement of p21variants, particularly the p21 C70T variant genotypes (CT/TT), in the etiology of HPV16-associated OPSCC. Further large and functional studies are required to validate the findings.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interplay between obesity, physical activity, weight gain and genetic variants in mTOR pathway have not been studied in renal cell carcinoma (RCC). We examined the associations between obesity, weight gain, physical activity and RCC risk. We also analyzed whether genetic variants in the mTOR pathway could modify the association. Incident renal cell carcinoma cases and healthy controls were recruited from the University of Texas MD Anderson Cancer Center in Houston, Texas. Cases and controls were frequency-matched by age (±5 years), ethnicity, sex, and county of residence. Epidemiologic data were collected via in-person interview. A total of 577 cases and 593 healthy controls (all white) were included. One hundred ninety-two (192) SNPs from 22 genes were available and their genotyping data were extracted from previous genome-wide association studies. Logistic regression and regression spline were performed to obtain odds ratios. Obesity at age 20, 40, and 3 years prior to diagnosis/recruitment, and moderate and large weight gain from age 20 to 40 were each significantly associated with increased RCC risk. Low physical activity was associated with a 4.08-fold (95% CI: 2.92-5.70) increased risk. Five single nucleotide polymorphisms (SNPs) were significantly associated with RCC risk and their cumulative effect increased the risk by up to 72% (95% CI: 1.20-2.46). Strata specific effects for weight change and genotyping cumulative groups were observed. However, no interaction was suggested by our study. In conclusion, energy balance related risk factors and genetic variants in the mTOR pathway may jointly influence susceptibility to RCC. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SMN1 and SMN2 (survival motor neuron) encode identical proteins. A critical question is why only the homozygous loss of SMN1, and not SMN2, results in spinal muscular atrophy (SMA). Analysis of transcripts from SMN1/SMN2 hybrid genes and a new SMN1 mutation showed a direct relationship between presence of disease and exon 7 skipping. We have reported previously that the exon-skipped product SMNΔ7 is partially defective for self-association and SMN self-oligomerization correlated with clinical severity. To evaluate systematically which of the five nucleotides that differ between SMN1 and SMN2 effect alternative splicing of exon 7, a series of SMN minigenes was engineered and transfected into cultured cells, and their transcripts were characterized. Of these nucleotide differences, the exon 7 C-to-T transition at codon 280, a translationally silent variance, was necessary and sufficient to dictate exon 7 alternative splicing. Thus, the failure of SMN2 to fully compensate for SMN1 and protect from SMA is due to a nucleotide exchange (C/T) that attenuates activity of an exonic enhancer. These findings demonstrate the molecular genetic basis for the nature and pathogenesis of SMA and illustrate a novel disease mechanism. Because individuals with SMA retain the SMN2 allele, therapy targeted at preventing exon 7 skipping could modify clinical outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The invasive signal amplification reaction has been previously developed for quantitative detection of nucleic acids and discrimination of single-nucleotide polymorphisms. Here we describe a method that couples two invasive reactions into a serial isothermal homogeneous assay using fluorescence resonance energy transfer detection. The serial version of the assay generates more than 107 reporter molecules for each molecule of target DNA in a 4-h reaction; this sensitivity, coupled with the exquisite specificity of the reaction, is sufficient for direct detection of less than 1,000 target molecules with no prior target amplification. Here we present a kinetic analysis of the parameters affecting signal and background generation in the serial invasive signal amplification reaction and describe a simple kinetic model of the assay. We demonstrate the ability of the assay to detect as few as 600 copies of the methylene tetrahydrofolate reductase gene in samples of human genomic DNA. We also demonstrate the ability of the assay to discriminate single base differences in this gene by using 20 ng of human genomic DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The key requirements for high-throughput single-nucleotide polymorphism (SNP) typing of DNA samples in large-scale disease case-control studies are automatability, simplicity, and robustness, coupled with minimal cost. In this paper we describe a fluorescence technique for the detection of SNPs that have been amplified by using the amplification refractory mutation system (ARMS)-PCR procedure. Its performance was evaluated using 32 sequence-specific primer mixes to assign the HLA-DRB alleles to 80 lymphoblastoid cell line DNAs chosen from our database for their diversity. All had been typed previously by alternative methods, either direct sequencing or gel electrophoresis. We believe the detection system that we call AMDI (alkaline-mediated differential interaction) satisfies the above criteria and is suitable for general high-throughput SNP typing.