993 resultados para SIMPLE WEIGHT MODULES
Resumo:
The molecular weight changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state Si-29 NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S) = 1.15 +/-0.2 and G(H) = 1.45 +/-0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Despite their limitations, linear filter models continue to be used to simulate the receptive field properties of cortical simple cells. For theoreticians interested in large scale models of visual cortex, a family of self-similar filters represents a convenient way in which to characterise simple cells in one basic model. This paper reviews research on the suitability of such models, and goes on to advance biologically motivated reasons for adopting a particular group of models in preference to all others. In particular, the paper describes why the Gabor model, so often used in network simulations, should be dropped in favour of a Cauchy model, both on the grounds of frequency response and mutual filter orthogonality.
Resumo:
Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.
Resumo:
Determination of the ash-free dry weight (AFDW) of marine specimens requires samples to be rinsed, soaked, and centrifuged. Problems associated with this technique were examined with the developmental stages of seastar species (Patiriella) with different modes of development. The influence of three rinsing solutions (ammonium formate [AF], filtered seawater [FSW], and reverse osmosis water [RO]) was assessed. The hypothesis that the AFDW technique is a measure of organic material was addressed by drying inorganic salts. Developmental stages of Patiriella calcar rinsed in FSW were twice as heavy as those rinsed in RO or AE indicating that samples should be rinsed in RO or AF before weighing. Soaking treatments had a significant effect on the AFDW of samples of P. calcar (planktonic developer), indicating that the rinsing period should be brief. Zygotes of Patiriella re gularis (planktonic developer) were significantly heavier than ova or gastrulae, regardless of treatment. In contrast, there were no significant differences in the AFDW of any stages or treatments of Patiriella exigua (benthic developer). This may be due to the presence of a modified fertilization envelope, which protects these benthic embryos. Inorganic salts with water of crystallization and FSW lost 20-75% and 14% of their dry weight, respectively, after ashing. We propose that salt ions may retain water, which does not evaporate during drying but is lost during ashing, resulting in the overestimation of sample AFDW. If a similar process occurs in the developmental stages of marine invertebrates, changes in the intracellular ionic composition through development may result in inaccurate estimates of biomass.
Resumo:
Knee joint-position sensitivity has been shown to decline with increasing age, with much of the research reported in the literature investigating this age effect in non-weight-bearing (NWB) conditions. However, little data is available in the more functional position of weight-bearing conditions. The objective of this study was to identify the influence of age on the accuracy and nature of knee joint-position sense (JPS) in both full weight-bearing (FWB) and partial weight-bearing (PWB) conditions and to determine the effect of lower-extremity dominance on knee JPS. Sixty healthy subjects from three age groups (young: 20-35 years old, middle-aged: 40-55 years, and older: 60-75 years) were assessed. Tests were conducted on both the right and left legs to examine the ability of subjects to correctly reproduce knee angles in an active criterion-active repositioning paradigm. Knee angles were measured in degrees using an electromagnetic tracking device, Polhemus 3Space Fastrak, that detected positions of sensors placed on the test limb. Errors in FWB knee joint repositioning did not increase with age, but significant age-related increases in knee joint-repositioning error were found in PWB. It was found that elderly subjects tended to overshoot the criterion angle more often than subjects from the young and middle-aged groups. Subjects in all three age groups performed better in FWB than in PWB. Differences between the stance-dominant (STD) and skill-dominant (SKD) legs did not reach significance. Results demonstrated that for, normal pain-free individuals, there is no age-related decline in knee JPS in FWB, although an age effect does exist in PWB. This outcome challenges the current view that a generalised decline in knee joint proprioception occurs with age. In addition, lower-limb dominance is not a factor in acuity of knee JPS.
Resumo:
Objective. To examine the relationship between child maltreatment and cognitive development in extremely low birth weight infants, adjusting for perinatal and parental risk factors. Methods. A total of 352 infants with birth weight of
Resumo:
Observations of accelerating seismic activity prior to large earthquakes in natural fault systems have raised hopes for intermediate-term eartquake forecasting. If this phenomena does exist, then what causes it to occur? Recent theoretical work suggests that the accelerating seismic release sequence is a symptom of increasing long-wavelength stress correlation in the fault region. A more traditional explanation, based on Reid's elastic rebound theory, argues that an accelerating sequence of seismic energy release could be a consequence of increasing stress in a fault system whose stress moment release is dominated by large events. Both of these theories are examined using two discrete models of seismicity: a Burridge-Knopoff block-slider model and an elastic continuum based model. Both models display an accelerating release of seismic energy prior to large simulated earthquakes. In both models there is a correlation between the rate of seismic energy release with the total root-mean-squared stress and the level of long-wavelength stress correlation. Furthermore, both models exhibit a systematic increase in the number of large events at high stress and high long-wavelength stress correlation levels. These results suggest that either explanation is plausible for the accelerating moment release in the models examined. A statistical model based on the Burridge-Knopoff block-slider is constructed which indicates that stress alone is sufficient to produce accelerating release of seismic energy with time prior to a large earthquake.
Resumo:
Reaching out to grasp an object (prehension) is a deceptively elegant and skilled behavior. The movement prior to object contact can be described as having two components [1], the movement of the hand to an appropriate location for gripping the object, the transport component, and the opening and closing of the aperture between the fingers as they prepare to grip the target, the grasp component. The grasp component is sensitive to the size of the object, so that a larger grasp aperture is formed for wider objects [1]; the maximum grasp aperture (MGA) is a little wider than the width of the target object and occurs later in the movement for larger objects [1, 2]. We present a simple model that can account for the temporal relationship between the transport and grasp components, We report the results of an experiment providing empirical support for our rule of thumb. The model provides a simple, but plausible, account of a neural control strategy that has been the center of debate over the last two decades.
Resumo:
We prove that the simple group L-3(5) which has order 372000 is efficient by providing an efficient presentation for it. This leaves one simple group with order less than one million, S-4(4) which has order 979200, whose efficiency or otherwise remains to be determined.
Resumo:
We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.