993 resultados para SIMPLE ASSAY
Resumo:
Current methods to detect transduction efficiency during the routine use of integrating retroviral vectors in gene therapy applications may require the use of radioactivity and usually rely upon subjective determination of the results. We have developed two competitive quantitative assays that use an enzyme-linked, amplicon hybridization assay (ELAHA) to detect the products of PCR-amplified regions of transgene from cells transduced with Moloney murine leukemia virus vectors. The quantitative assays (PCR-ELAHA) proved to be simple, rapid, and sensitive, avoiding the need for Southern hybridization, complex histochemical stains, or often subjective and time-consuming tissue culture and immunofluorescence assays. The PCR-ELAHA systems can rapidly detect proviral DNA from any retroviral vector carrying the common selective and marker genes neomycin phosphotransferase and green fluorescent protein, and the methods described are equally applicable to other sequences of interest, providing a cheaper alternative to the evolving real-time PCR methods. The results revealed the number of copies of retrovector provirus present per stably transduced cell using vectors containing either one or both qPCR targets.
Resumo:
A simple technique for routine, reproducible global surveillance of the drug susceptibility status of the anaerobic protozoa Trichomonas, Entamoeba, and Giardia is described, Data collected using this technique can be readily compared among different laboratories and with previously reported data. The technique employs a commercially available sachet and bag system to generate a low-oxygen environment and log, drug dilutions in microtiter plates, which can be monitored without aerobic exposure, to assay drug-resistant laboratory lines and clinically resistant isolates. MICs (after 2 days) of 3.2 and 25 muM indicated metronidazole-sensitive and highly clinically resistant isolates of T. vaginalis in anaerobic assays, respectively. The aerobic MICs were 25 and > 200 muM. MICs (1 day) of 12.5 to 25 muM were found for axenic lines of E. histolytica, and MICs for G. duodenalis (3 days) ranged from 6.3 muM for metronidazole-sensitive isolates to 50 muM for laboratory metronidazole-resistant lines. This technique should encourage more extensive monitoring of drug resistance in these organisms.
Resumo:
Observations of accelerating seismic activity prior to large earthquakes in natural fault systems have raised hopes for intermediate-term eartquake forecasting. If this phenomena does exist, then what causes it to occur? Recent theoretical work suggests that the accelerating seismic release sequence is a symptom of increasing long-wavelength stress correlation in the fault region. A more traditional explanation, based on Reid's elastic rebound theory, argues that an accelerating sequence of seismic energy release could be a consequence of increasing stress in a fault system whose stress moment release is dominated by large events. Both of these theories are examined using two discrete models of seismicity: a Burridge-Knopoff block-slider model and an elastic continuum based model. Both models display an accelerating release of seismic energy prior to large simulated earthquakes. In both models there is a correlation between the rate of seismic energy release with the total root-mean-squared stress and the level of long-wavelength stress correlation. Furthermore, both models exhibit a systematic increase in the number of large events at high stress and high long-wavelength stress correlation levels. These results suggest that either explanation is plausible for the accelerating moment release in the models examined. A statistical model based on the Burridge-Knopoff block-slider is constructed which indicates that stress alone is sufficient to produce accelerating release of seismic energy with time prior to a large earthquake.
Resumo:
Reaching out to grasp an object (prehension) is a deceptively elegant and skilled behavior. The movement prior to object contact can be described as having two components [1], the movement of the hand to an appropriate location for gripping the object, the transport component, and the opening and closing of the aperture between the fingers as they prepare to grip the target, the grasp component. The grasp component is sensitive to the size of the object, so that a larger grasp aperture is formed for wider objects [1]; the maximum grasp aperture (MGA) is a little wider than the width of the target object and occurs later in the movement for larger objects [1, 2]. We present a simple model that can account for the temporal relationship between the transport and grasp components, We report the results of an experiment providing empirical support for our rule of thumb. The model provides a simple, but plausible, account of a neural control strategy that has been the center of debate over the last two decades.
Resumo:
The detection of Neisseria gonorrhoeae by the polymerase chain reaction (PCR) is now recognized as a sensitive and specific method of diagnosing infection by the organism. In this Study 152 urine specimens were examined for N. gonorrhoeae by a real-time PCR method using the LightCycler platform and results were compared to an in-house PCR assay using an ELISA-based detection method. N. gonorrhoeae DNA was detected in 29 (19%) specimens by LightCycler PCR (LC-PCR) and in 31 (20%) specimens by the in house PCR method. The LightCycler assay proved to be specific and 94% sensitive when compared to the in house PCR method. These features combined with the rapid turn-around time for results makes the LC-PCR particularly suitable for the detection of N. gonorrhoeae in a routine clinical laboratory. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We prove that the simple group L-3(5) which has order 372000 is efficient by providing an efficient presentation for it. This leaves one simple group with order less than one million, S-4(4) which has order 979200, whose efficiency or otherwise remains to be determined.
Resumo:
This Brief Report presents a corollary to Uhlmann's theorem which provides a simple operational interpretation of the fidelity of mixed states.
Resumo:
This Letter presents a simple formula for the average fidelity between a unitary quantum gate and a general quantum operation on a qudit, generalizing the formula for qubits found by Bowdrey et al. [Phys. Lett. A 294 (2002) 258]. This formula may be useful for experimental determination of average gate fidelity. We also give a simplified proof of a formula due to Horodecki et al. [Phys. Rev. A 60 (1999) 1888], connecting average gate fidelity to entanglement fidelity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper we establish a foundation for understanding the instrumentation needs of complex dynamic systems if ecological interface design (EID)-based interfaces are to be robust in the face of instrumentation failures. EID-based interfaces often include configural displays which reveal the higher-order properties of complex systems. However, concerns have been expressed that such displays might be misleading when instrumentation is unreliable or unavailable. Rasmussen's abstraction hierarchy (AH) formalism can be extended to include representations of sensors near the functions or properties about which they provide information, resulting in what we call a sensor-annotated abstraction hierarchy. Sensor-annotated AHs help the analyst determine the impact of different instrumentation engineering policies on higher-order system information by showing how the data provided from individual sensors propagates within and across levels of abstraction in the AH. The use of sensor-annotated AHs with a configural display is illustrated with a simple water reservoir example. We argue that if EID is to be effectively employed in the design of interfaces for complex systems, then the information needs of the human operator need to be considered at the earliest stages of system development while instrumentation requirements are being formulated. In this way, Rasmussen's AH promotes a formative approach to instrumentation engineering. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The use of electrotransfer for DNA delivery to prokaryotic cells, and eukaryotic cells in vitro, has been well known and widely used for many years. However, it is only recently that electric fields have been used to enhance DNA transfer to animal cells in vivo, and this is known as DNA electrotransfer or in vivo DNA electroporation. Some of the advantages of this method of somatic cell gene transfer are that it is a simple method that can be used to transfer almost any DNA construct to animal cells and tissues in vivo; multiple constructs can be co-transfected; it is equally applicable to dividing and nondividing cells; the DNA of interest does not need to be subeloned into a specific viral transfer vector and there is no need for the production of high titre viral stocks; and, as no viral genes are expressed there is less chance of an adverse immunologic reaction to vector sequences. The ease with which efficient in vivo gene transfer can be achieved with in vivo DNA electrotransfer is now allowing genetic analysis to be applied to a number of classic animal model systems where transgenic and embryonic stem cell techniques are not well developed, but for which a wealth of detailed descriptive embryological information is available, or surgical manipulation is much more feasible. As well as exciting applications in developmental biology, in vivo DNA electrotransfer is also being used to transfer genes to skeletal muscle and drive expression of therapeutically active proteins, and to examine exogenous gene and protein function in normal adult cells situated within the complex environment of a tissue and organ system in vivo. Thus, in effect providing the in vivo equivalent of the in vitro transient transfection assay. As the widespread use of in vivo electroporation has really only just begun, it is likely that the future will hold many more applications for this technology in basic research, biotechnology and clinical research areas.
Resumo:
To determine which species and populations of Anopheles transmit malaria in any given situation, immunological assays for malaria sporozoite antigen can replace traditional microscopical examination of freshly dissected Anopheles. We developed a wicking assay for use with mosquitoes that identifies the presence or absence of specific peptide epitopes of circumsporozoite (CS) protein of Plasmodium falciparum and two strains of Plasmodium vivax (variants 210 and 247). The resulting assay (VecTest(TM) Malaria) is a rapid, one-step procedure using a 'dipstick' test strip capable of detecting and distinguishing between P. falciparum and P. vivax infections in mosquitoes. The objective of the present study was to test the efficacy, sensitivity, stability and field-user acceptability of this wicking dipstick assay. In collaboration with 16 test centres world-wide, we evaluated more than 40 000 units of this assay, comparing it to the standard CS ELISA. The 'VecTest(TM) Malaria' was found to show 92% sensitivity and 98.1% specificity, with 97.8% accuracy overall. In accelerated storage tests, the dipsticks remained stable for >15 weeks in dry conditions up to 45degreesC and in humid conditions up to 37degreesC. Evidently, this quick and easy dipstick test performs at an acceptable level of reliability and offers practical advantages for field workers needing to make rapid surveys of malaria vectors.