947 resultados para SEASONAL VARIABILITY


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipids of the Arctic ctenophore Mertensia ovum, collected from Kongsfjorden (Svalbard) in 2001, were analysed to investigate seasonal variability and fate of dietary lipids. Total lipids, lipid classes and fatty acid and alcohol compositions were determined in animals, which were selected according to age-group and season. Changes in lipids of age-group 0 animals were followed during growth from spring to autumn. Total lipids increased from May to September. Lipids as percentage of dry mass were lowest in August indicating their use for reproduction. Higher values occurred in September, which may be due to lipid storage for overwintering. Wax esters were the major lipid class accounting for about 50% of total lipids in age-group 0 animals from July and August. Phospholipids were the second largest lipid fraction with up to 46% in this age-group. The principal fatty acids of M. ovum from all age-groups were 22:6(n-3), 20:5(n-3) and 16:0. Wax ester fatty alcohols were dominated by 22:1(n-11) and 20:1(n-9) followed by moderate proportions of 16:0. The unique feature of M. ovum lipids was the high amount of free fatty alcohols originating probably from the dietary wax esters. In May, free alcohols exhibited the highest mean proportion with 14.6% in age-group 0 animals. We present the first data describing a detailed free fatty alcohol composition in zooplankton. This composition was very different from the alcohol composition of M. ovum wax esters because of the predominance of the long-chain monounsaturated 22:1 (n-11) alcohol accounting for almost 100% of total free alcohols in some samples. The detailed lipid composition clearly reflected feeding of M. ovum on the herbivorous calanoid species, Calanus glacialis and C. finmarchicus, the abundant members of the zooplankton community in Kongsfjorden. Other copepod species or prey items seem to be less important for M. ovum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the optimal use in palaeoceanographic studies of the stable oxygen isotopic signal and elemental composition of the calcareous photosynthetic dinoflagellate Thoracosphaera heimii, it is essential to gain detailed information about its calcification depth and spatial distribution. We therefore studied the vertical and horizontal distribution patterns of T. heimii in the upper water column (0-200 m) along three transects: an inshore-offshore gradient off Cape Blanc (CB), a south-north transect from CB to the Portuguese coast and a north-south transect off Tanzania. We compared concentrations of living cysts (cells with cell content) with chlorophyll-a, salinity and temperature measurements at the sampling depth. In order to explore the seasonal variability in cyst production, three transect off CB were sampled at three different times of the year. Living T. heimii cysts were found in the upper 160 m of the water column with highest concentrations in the photic zone indicating that the calcification of T. heimii occurs in the upper part of the water column. Maximal abundances of living cysts were found relatively often in or just above the deep chlorophyll maximum (DCM), the depth of which varies regionally from about 20-40 m off CB to about 80 m off Tanzania and along the transect from CB to the Portuguese Coast. However, there was no significant correlation at the 95% confidence level between the cyst concentrations and temperature, salinity and chlorophyll-a concentrations at the sampling depths observed. In both the Atlantic and Indian Oceans, the highest abundances of T. heimii were observed in regions where the upper water masses contained relatively low nutrient concentrations that are influenced only sporadically, or not at all, by enhanced photic zone mixing related to the presence of upwelling cells or river outflow plumes at or close to the sampling sites. The seasonal production of cysts by T. heimii appears to be negatively related to the presence of upwelling filaments across the sampling sites. Our study suggests that turbulence of the upper water masses is a major environmental factor influencing T. heimii production.