900 resultados para Sánchez Albornoz, Claudio
Resumo:
In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni80Fe20)/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer has a thickness close to the transition thickness between Neel and Bloch domain walls.
Resumo:
TbxFe1−x thin films deposited by sputtering on Mo were investigated structurally and magnetically. The microstructure consists of TbFe2 nanoparticles embedded in an amorphous matrix, and the Tb content can be correlated with an increase in the volume of these nanoparticles. Similar microstructure and behavior were found when TbFe2 was deposited on glass and on a Pt buffer layer. Nevertheless, thermal treatments promote a different effect, depending on the mechanical stiffness of the buffer layer. The layers deposited on Mo, a rigid material, show crystalline TbFe2 together with α-Tb phase upon thermal treatment. In contrast, TbFe2 does not crystallize properly on Pt, a material with a lower stiffness than Mo. Intermediate results were observed on the film deposited on glass. Experimental results show the impact of the buffer stiffness on the crystallization process. Moreover, the formation of α-Tb appears to be fundamental to crystallized TbFe2 on layers deposited on rigid buffers
Resumo:
Polyvariant specialization allows generating múltiple versions of a procedure, which can then be separately optimized for different uses. Since allowing a high degree of polyvariance often results in more optimized code, polyvariant specializers, such as most partial evaluators, can genérate a large number of versions. This can produce unnecessarily large residual programs. Also, large programs can be slower due to cache miss effects. A possible solution to this problem is to introduce a minimization step which identifies sets of equivalent versions, and replace all occurrences of such versions by a single one. In this work we present a unifying view of the problem of superfluous polyvariance. It includes both partial deduction and abstract múltiple specialization. As regards partial deduction, we extend existing approaches in several ways. First, previous work has dealt with puré logic programs and a very limited class of builtins. Herein we propose an extensión to traditional characteristic trees which can be used in the presence of calis to external predicates. This includes all builtins, librarles, other user modules, etc. Second, we propose the possibility of collapsing versions which are not strictly equivalent. This allows trading time for space and can be useful in the context of embedded and pervasive systems. This is done by residualizing certain computations for external predicates which would otherwise be performed at specialization time. Third, we provide an experimental evaluation of the potential gains achievable using minimization which leads to interesting conclusions.
Resumo:
The agent programming landscape has been revealed as a natural framework for developing “intelligence” in AI. This can be seen from the extensive use of the agent concept in presenting (and developing) AI systems, the proliferation of agent theories, and the evolution of concepts such as agent societies (social intelligence) and coordination.
Resumo:
En este trabajo se presenta la implementación de un interferómetro por difracción puntual construido con un monopíxel de cristal líquido. En primer lugar se ha fabricado un monopíxel de cristal líquido con alineamiento paralelo de unas dimensiones de 3x3 cm2, en el que el electrodo cubre toda la superficie excepto en un orificio central de unas 50 ?m. Este orificio es el que actuará como punto difractor. Aplicando diferentes tensiones se puede cambiar la fase de la onda que llega al píxel en relación al punto central. Se ha construido un interferómetro con este elemento. Se captan 4 interferogramas con lo que se puede obtener la distribución de amplitud y fase de la onda. Se aplica este sistema para obtener un holograma digital y enfocar digitalmente diferentes planos de un objeto tridimensional.
Resumo:
Immersion and interaction have been identified as key factors influencing the quality of experience in stereoscopic video systems. The work presented here aims to create a new paradigm for 3D Multimedia consumption exploiting these factors in order to increase user involvement. We use a 5-sided CAVETM environment to support 3D panoramic video reproduction, real-time insertion of synthetic objects into the three-dimensional scene and real-time user interaction with the inserted elements. In this paper we describe our system requirements, functionalities, conceptual design and preliminary implementation results emphasizing the most relevant challenges accomplished. The focus is on three main issues: the generation of stereoscopic video panoramas; the synchronous reproduction of immersive 3D video across multiple screens; and, the real-time insertion algorithm implemented for the integration of synthetic objects into the stereoscopic video. These results have been successfully integrated into the graphic engine managing the operation of the CAVETM infrastructure.
Experimental Prototype Merging Stereo Panoramic Video and Interactive 3D Content in a 5-sided CAVETM
Resumo:
Immersion and interaction have been identified as key factors influencing the quality of experience in stereoscopic video systems. An experimental prototype designed to explore the influence of these factors in 3D video applications is described here1. The focus is on the real-time insertion algorithm of new 3D models into the original video streams. Using this algorithm, our prototype is aimed to explore a new interaction paradigm ? similar to the augmented reality approach ? with 3D video applications.
Resumo:
A two-stage mission to place a spacecraft (SC) below the Jovian radiation belts, using a spinning bare tether with plasma contactors at both ends to provide propulsion and power,is proposed. Capture by Lorentz drag on the tether, at the periapsis of a barely hyperbolic equatorial orbit, is followed by a sequence of orbits at near-constant periapsis, drag finally bringing the SC down to a circular orbit below the halo ring. Although increasing both tether heating and bowing, retrograde motion can substantially reduce accumulated dose as compared with prograde motion, at equal tether-to-SC mass ratio. In the second stage,the tether is cut to a segment one order of magnitude smaller, with a single plasma contactor, making the SC to slowly spiral inward over severalmonths while generating large onboard power, which would allow multiple scientific applications, including in situ study of Jovian grains, auroral sounding of upper atmosphere, and space- and time-resolved observations of surface and subsurface.