988 resultados para Royal Hospital for Seamen at Greenwich
Resumo:
The aim of this paper is to describe the prevalence and perceptions of pain and pain management amongst hospital in-patients. A cross-sectional descriptive survey of 205 patients was conducted. Presence and severity of pain was assessed using verbal descriptor and visual analogue scales, and perceptions of pain were assessed using multi-item scales. Although the severity of pain reported was consistent across age groups and clinical areas, women in the study sample were significantly more likely to report high levels of pain than men. Differences in how men and women communicate their pain were observed, with women indicating that they were less willing to ask for help with their pain. Results suggest that pain continues to be an important problem for a large number of men and women in hospital, and that the experience of pain impacts negatively upon their well-being. Gender differences in the experience of and response to pain remain important considerations for clinical nurses who have major responsibilities for the management of pain in hospitalized patients.
Resumo:
Background & aims The Australasian Nutrition Care Day Survey (ANCDS) ascertained if malnutrition and poor food intake are independent risk factors for health-related outcomes in Australian and New Zealand hospital patients. Methods Phase 1 recorded nutritional status (Subjective Global Assessment) and 24-h food intake (0, 25, 50, 75, 100% intake). Outcomes data (Phase 2) were collected 90-days post-Phase 1 and included length of hospital stay (LOS), readmissions and in-hospital mortality. Results Of 3122 participants (47% females, 65 ± 18 years) from 56 hospitals, 32% were malnourished and 23% consumed ≤ 25% of the offered food. Malnourished patients had greater median LOS (15 days vs. 10 days, p < 0.0001) and readmissions rates (36% vs. 30%, p = 0.001). Median LOS for patients consuming ≤ 25% of the food was higher than those consuming ≤ 50% (13 vs. 11 days, p < 0.0001). The odds of 90-day in-hospital mortality were twice greater for malnourished patients (CI: 1.09–3.34, p = 0.023) and those consuming ≤ 25% of the offered food (CI: 1.13–3.51, p = 0.017), respectively. Conclusion The ANCDS establishes that malnutrition and poor food intake are independently associated with in-hospital mortality in the Australian and New Zealand acute care setting.
Resumo:
One aim of the Australasian Nutrition Care Day Survey (ANCDS) was to explore dietary intake and nutritional status of acute care hospital patients. Dietitians from 56 hospitals in Australia and New Zealand completed a 24-hour nutritional status and dietary intake audit of 3000 adult patients. Participants were evaluated for nutritional risk using the Malnutrition Screening Tool (MST). Those ‘at risk’ underwent nutritional assessment using Subjective Global Assessment (SGA). Dietitians observed participants’ dietary intake at each main meal and recorded mid-meal intake via participant interviews. Intakes were recorded as 0%, 25%, 50%, 75%, or 100% of that offered for each meal during the 24-hour audit. Preliminary results for 1550 participants (males = 853; females = 697), age = 64 ± 17 years and BMI = 27 ± 7 kg/m2. Fifty-five percent (n = 853) of the participants had BMI > 25 kg/m2. The MST identified 41% (n = 636) ‘at risk’ for malnutrition. Of those ‘at risk’, 70% were assessed as malnourished resulting in an overall malnutrition prevalence of 30% (25% moderately malnourished, 5% severely malnourished). One-quarter of malnourished participants (n = 118) were on standard hospital diets without additional nutritional support. Fifty percent of malnourished patients (n = 235) and 40% of all patients (n = 620) had an overall 24-hour food consumption of ≤50% during the 24-hour audit. The ANCDS found that skeletons in the hospital closet continue to exist and that acute care patients continue to have suboptimal dietary intake. The ANCDS provides valuable insight into gaps in existing nutrition care practices.
Resumo:
This study was undertaken as one of the first investigations of nurses' smoking habits in Longkou city, Shandong Province, China. An anonymous cross-sectional survey was administered as part of a larger investigation of healthcare professionals at a university teaching hospital during 2008. A total of 88 nurses responded to the survey, from whom tobacco-related data were provided by 83 of them (94%). Their overall smoking rate was very low (1%), with no male nurses reporting themselves to be current tobacco users. Overall, the current study suggests that smoking rates are very low among Chinese nurses in Longkou city, Shandong Province. These results are also consistent with studies of nurses' tobacco use conducted in other regions of China.
Resumo:
A preceptor project at the Royal Brisbane and Women's Hospital in Queensland, Australia, explored existing levels of preceptorship support during the transition processes of newly employed or transferred nurses and midwives. Initiatives adopted have enhanced the implementation and maintenance of preceptorship principles and communication processes and defined accountability and responsibilities. Outcomes have contributed to enhanced role clarity, improved communication, increased support for teaching and learning, and infrastructure processes to facilitate the preceptor-preceptee relationship and increased retention.
Resumo:
Aim. To develop and evaluate the implementation of a communication board for paramedics to use with patients as an augmentative or alternative communication tool to address communication needs of patients in the pre-hospital setting. Method. A double-sided A4-size communication board was designed specifically for use in the pre-hospital setting by the Queensland Ambulance Service and Disability and Community Care Services. One side of the board contains expressive messages that could be used by both the patient and paramedic. The other side contains messages to support patients’ understanding and interaction tips for the paramedic. The communication board was made available in every ambulance and patient transport vehicle in the Brisbane Region. Results. A total of 878 paramedics completed a survey that gauged which patient groups they might use the communication board with. The two most common groups were patients from culturally and linguistically diverse backgrounds and children. Staff reported feeling confident in using the board, and 72% of interviewed paramedics agreed that the communication board was useful for aiding communication with patients. Feedback from paramedics suggests that the board is simple to use, reduces patient frustration and improves communication. Conclusion. These results suggest that a communication board can be applied in the pre-hospital setting to support communication success with patients. What is known about the topic? It is imperative that communication between patient and paramedic is clear and effective. Research has shown that communication boards have been effective with people with temporary or permanent communication difficulties. What does this paper add? This is the first paper outlining the development and use of a communication board by paramedics in the pre-hospital setting in Australia. The paper details the design of the communication board for the unique pre-hospital environment. The paper provides some preliminary data on the use of the communication board with certain patient groups and its effectiveness as an alternative communication tool. What are the implications for practitioners? The findings support the use of the tool as a viable option in supporting the communication between paramedics and a range of patients. It is not suggested that this communication board will meet the complete communication needs of any individual in this environment, but it is hoped that the board’s presence within the Queensland Ambulance Service may result in paramedics introducing the board on occasions where communication with a patient is challenging.
Resumo:
Background Carbohydrate-rich fluids are used to improve postoperative recovery but the effectiveness of the product for reducing length of hospital stay is uncertain. Objective To assess the effectiveness of preoperative loading with carbohydrates on postoperative outcomes. Participants Forty six patients booked for elective colorectal surgery. Methods Participants were allocated to a Carbohydrate-rich fluid group or Usual Care group during their pre-admission clinic visit. The primary outcome was ‘Time to readiness for discharge’. Results Patients in the control group spent on average 4.3 days (95% confidence interval 3.2 to 5.7) and the Carbohydrate-rich fluid group spent 4.1 days (95% confidence interval 3.2 to 5.4) until the primary outcome was met (p=0.824). Conclusion The safety of preoperative high carbohydrate fluids is supported but we were unable to confirm or refute the benefit of CHO for shorter hospital stay following elective colorectal surgery.
Resumo:
Purpose: The precise shape of the three-dimensional dose distributions created by intensity-modulated radiotherapy means that the verification of patient position and setup is crucial to the outcome of the treatment. In this paper, we investigate and compare the use of two different image calibration procedures that allow extraction of patient anatomy from measured electronic portal images of intensity-modulated treatment beams. Methods and Materials: Electronic portal images of the intensity-modulated treatment beam delivered using the dynamic multileaf collimator technique were acquired. The images were formed by measuring a series of frames or segments throughout the delivery of the beams. The frames were then summed to produce an integrated portal image of the delivered beam. Two different methods for calibrating the integrated image were investigated with the aim of removing the intensity modulations of the beam. The first involved a simple point-by-point division of the integrated image by a single calibration image of the intensity-modulated beam delivered to a homogeneous polymethyl methacrylate (PMMA) phantom. The second calibration method is known as the quadratic calibration method and required a series of calibration images of the intensity-modulated beam delivered to different thicknesses of homogeneous PMMA blocks. Measurements were made using two different detector systems: a Varian amorphous silicon flat-panel imager and a Theraview camera-based system. The methods were tested first using a contrast phantom before images were acquired of intensity-modulated radiotherapy treatment delivered to the prostate and pelvic nodes of cancer patients at the Royal Marsden Hospital. Results: The results indicate that the calibration methods can be used to remove the intensity modulations of the beam, making it possible to see the outlines of bony anatomy that could be used for patient position verification. This was shown for both posterior and lateral delivered fields. Conclusions: Very little difference between the two calibration methods was observed, so the simpler division method, requiring only the single extra calibration measurement and much simpler computation, was the favored method. This new method could provide a complementary tool to existing position verification methods, and it has the advantage that it is completely passive, requiring no further dose to the patient and using only the treatment fields.
Resumo:
Introduction: The accurate identification of tissue electron densities is of great importance for Monte Carlo (MC) dose calculations. When converting patient CT data into a voxelised format suitable for MC simulations, however, it is common to simplify the assignment of electron densities so that the complex tissues existing in the human body are categorized into a few basic types. This study examines the effects that the assignment of tissue types and the calculation of densities can have on the results of MC simulations, for the particular case of a Siemen’s Sensation 4 CT scanner located in a radiotherapy centre where QA measurements are routinely made using 11 tissue types (plus air). Methods: DOSXYZnrc phantoms are generated from CT data, using the CTCREATE user code, with the relationship between Hounsfield units (HU) and density determined via linear interpolation between a series of specified points on the ‘CT-density ramp’ (see Figure 1(a)). Tissue types are assigned according to HU ranges. Each voxel in the DOSXYZnrc phantom therefore has an electron density (electrons/cm3) defined by the product of the mass density (from the HU conversion) and the intrinsic electron density (electrons /gram) (from the material assignment), in that voxel. In this study, we consider the problems of density conversion and material identification separately: the CT-density ramp is simplified by decreasing the number of points which define it from 12 down to 8, 3 and 2; and the material-type-assignment is varied by defining the materials which comprise our test phantom (a Supertech head) as two tissues and bone, two plastics and bone, water only and (as an extreme case) lead only. The effect of these parameters on radiological thickness maps derived from simulated portal images is investigated. Results & Discussion: Increasing the degree of simplification of the CT-density ramp results in an increasing effect on the resulting radiological thickness calculated for the Supertech head phantom. For instance, defining the CT-density ramp using 8 points, instead of 12, results in a maximum radiological thickness change of 0.2 cm, whereas defining the CT-density ramp using only 2 points results in a maximum radiological thickness change of 11.2 cm. Changing the definition of the materials comprising the phantom between water and plastic and tissue results in millimetre-scale changes to the resulting radiological thickness. When the entire phantom is defined as lead, this alteration changes the calculated radiological thickness by a maximum of 9.7 cm. Evidently, the simplification of the CT-density ramp has a greater effect on the resulting radiological thickness map than does the alteration of the assignment of tissue types. Conclusions: It is possible to alter the definitions of the tissue types comprising the phantom (or patient) without substantially altering the results of simulated portal images. However, these images are very sensitive to the accurate identification of the HU-density relationship. When converting data from a patient’s CT into a MC simulation phantom, therefore, all possible care should be taken to accurately reproduce the conversion between HU and mass density, for the specific CT scanner used. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital (RBWH), Brisbane, Australia. The authors are grateful to the staff of the RBWH, especially Darren Cassidy, for assistance in obtaining the phantom CT data used in this study. The authors also wish to thank Cathy Hargrave, of QUT, for assistance in formatting the CT data, using the Pinnacle TPS. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.
Resumo:
Introduction: The use of amorphous-silicon electronic portal imaging devices (a-Si EPIDs) for dosimetry is complicated by the effects of scattered radiation. In photon radiotherapy, primary signal at the detector can be accompanied by photons scattered from linear accelerator components, detector materials, intervening air, treatment room surfaces (floor, walls, etc) and from the patient/phantom being irradiated. Consequently, EPID measurements which presume to take scatter into account are highly sensitive to the identification of these contributions. One example of this susceptibility is the process of calibrating an EPID for use as a gauge of (radiological) thickness, where specific allowance must be made for the effect of phantom-scatter on the intensity of radiation measured through different thicknesses of phantom. This is usually done via a theoretical calculation which assumes that phantom scatter is linearly related to thickness and field-size. We have, however, undertaken a more detailed study of the scattering effects of fields of different dimensions when applied to phantoms of various thicknesses in order to derive scattered-primary ratios (SPRs) directly from simulation results. This allows us to make a more-accurate calibration of the EPID, and to qualify the appositeness of the theoretical SPR calculations. Methods: This study uses a full MC model of the entire linac-phantom-detector system simulated using EGSnrc/BEAMnrc codes. The Elekta linac and EPID are modelled according to specifications from the manufacturer and the intervening phantoms are modelled as rectilinear blocks of water or plastic, with their densities set to a range of physically realistic and unrealistic values. Transmissions through these various phantoms are calculated using the dose detected in the model EPID and used in an evaluation of the field-size-dependence of SPR, in different media, applying a method suggested for experimental systems by Swindell and Evans [1]. These results are compared firstly with SPRs calculated using the theoretical, linear relationship between SPR and irradiated volume, and secondly with SPRs evaluated from our own experimental data. An alternate evaluation of the SPR in each simulated system is also made by modifying the BEAMnrc user code READPHSP, to identify and count those particles in a given plane of the system that have undergone a scattering event. In addition to these simulations, which are designed to closely replicate the experimental setup, we also used MC models to examine the effects of varying the setup in experimentally challenging ways (changing the size of the air gap between the phantom and the EPID, changing the longitudinal position of the EPID itself). Experimental measurements used in this study were made using an Elekta Precise linear accelerator, operating at 6MV, with an Elekta iView GT a-Si EPID. Results and Discussion: 1. Comparison with theory: With the Elekta iView EPID fixed at 160 cm from the photon source, the phantoms, when positioned isocentrically, are located 41 to 55 cm from the surface of the panel. At this geometry, a close but imperfect agreement (differing by up to 5%) can be identified between the results of the simulations and the theoretical calculations. However, this agreement can be totally disrupted by shifting the phantom out of the isocentric position. Evidently, the allowance made for source-phantom-detector geometry by the theoretical expression for SPR is inadequate to describe the effect that phantom proximity can have on measurements made using an (infamously low-energy sensitive) a-Si EPID. 2. Comparison with experiment: For various square field sizes and across the range of phantom thicknesses, there is good agreement between simulation data and experimental measurements of the transmissions and the derived values of the primary intensities. However, the values of SPR obtained through these simulations and measurements seem to be much more sensitive to slight differences between the simulated and real systems, leading to difficulties in producing a simulated system which adequately replicates the experimental data. (For instance, small changes to simulated phantom density make large differences to resulting SPR.) 3. Comparison with direct calculation: By developing a method for directly counting the number scattered particles reaching the detector after passing through the various isocentric phantom thicknesses, we show that the experimental method discussed above is providing a good measure of the actual degree of scattering produced by the phantom. This calculation also permits the analysis of the scattering sources/sinks within the linac and EPID, as well as the phantom and intervening air. Conclusions: This work challenges the assumption that scatter to and within an EPID can be accounted for using a simple, linear model. Simulations discussed here are intended to contribute to a fuller understanding of the contribution of scattered radiation to the EPID images that are used in dosimetry calculations. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital, Brisbane, Australia. The authors are also grateful to Elekta for the provision of manufacturing specifications which permitted the detailed simulation of their linear accelerators and amorphous-silicon electronic portal imaging devices. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.
Resumo:
The purpose of this study was to describe Japanese hospital nurses’ perceptions of the nursing practice environment and examine its association with nurse-reported ability to provide quality nursing care, quality of patient care and ward morale. A cross-sectional survey design was used including 223 nurses working in 12 acute inpatient wards in a large Japanese teaching hospital. Nurses rated their work environment favorably overall using the Japanese version of the Practice Environment Scale of the Nursing Work Index. Subscale scores indicated high perceptions of physician relations and quality of nursing management, but lower scores for staffing and resources. Ward nurse managers generally rated the practice environment more positively than staff nurses except for staffing and resources. Regression analyses found the practice environment was a significant predictor of quality of patient care and ward morale, whereas perceived ability to provide quality nursing care was most strongly associated with years of clinical experience. These findings support interventions to improve the nursing practice environment, particularly staffing and resource adequacy, to enhance quality of care and ward morale in Japan.
Resumo:
Background: Previous attempts at costing infection control programmes have tended to focus on accounting costs rather than economic costs. For studies using economic costs, estimates tend to be quite crude and probably underestimate the true cost. One of the largest costs of any intervention is staff time, but this cost is difficult to quantify and has been largely ignored in previous attempts. Aim: To design and evaluate the costs of hospital-based infection control interventions or programmes. This article also discusses several issues to consider when costing interventions, and suggests strategies for overcoming these issues. Methods: Previous literature and techniques in both health economics and psychology are reviewed and synthesized. Findings: This article provides a set of generic, transferable costing guidelines. Key principles such as definition of study scope and focus on large costs, as well as pitfalls (e.g. overconfidence and uncertainty), are discussed. Conclusion: These new guidelines can be used by hospital staff and other researchers to cost their infection control programmes and interventions more accurately.