822 resultados para Robust autonomy
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.
Resumo:
This letter introduces a new robust nonlinear identification algorithm using the Predicted REsidual Sums of Squares (PRESS) statistic and for-ward regression. The major contribution is to compute the PRESS statistic within a framework of a forward orthogonalization process and hence construct a model with a good generalization property. Based on the properties of the PRESS statistic the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation.
Resumo:
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based on local appearance, (iii) hierarchical object recognition, and (iv) fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed. Copyright (C) 2007 Hindawi Publishing Corporation. All rights reserved.
Resumo:
This paper presents a new strategy for controlling rigid-robot manipulators in the presence of parametric uncertainties or un-modelled dynamics. The strategy combines an adaptation law with a well known robust controller proposed by Spong, which is derived using Lyapunov's direct method. Although the tracking problem of manipulators has been successfully solved with different strategies, there are some conditions under which their efficiency is limited. Specifically, their performance decreases when unknown loading masses or model disturbances are introduced. The aim of this work is to show that the proposed strategy performs better than existing algorithms, as verified with real-time experimental results with a Puma-560 robot. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Radial basis function networks can be trained quickly using linear optimisation once centres and other associated parameters have been initialised. The authors propose a small adjustment to a well accepted initialisation algorithm which improves the network accuracy over a range of problems. The algorithm is described and results are presented.
Resumo:
Little has so far been reported on the robustness of non-orthogonal space-time block codes (NO-STBCs) over highly correlated channels (HCC). Some of the existing NO-STBCs are indeed weak in robustness against HCC. With a view to overcoming such a limitation, a generalisation of the existing robust NO-STBCs based on a 'matrix Alamouti (MA)' structure is presented.
Resumo:
An alternative blind deconvolution algorithm for white-noise driven minimum phase systems is presented and verified by computer simulation. This algorithm uses a cost function based on a novel idea: variance approximation and series decoupling (VASD), and suggests that not all autocorrelation function values are necessary to implement blind deconvolution.
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
This paper is concerned with the design of robust feedback H~-control systems for the control of the upright posture of paraplegic persons standing. While the subject stands in a special apparatus, stabilising torque at the ankle joint is generated by electrical stimulation of the paralyzed calf muscles. Since the muscles acting as actuators in this setup show a significant degree of nonlinearity, a robust H~-control design is used. The design approach is implemented in experiments with a paraplegic subject. The results demonstrate good performance and closed loop stability over the whole range of operation.
Resumo:
A novel Neuropredictive Teleoperation (NPT) Scheme is presented. The design results from two key ideas: the exploitation of the measured or estimated neural input to the human arm or its electromyograph (EMG) as the system input and the employment of a predictor of the arm movement, based on this neural signal and an arm model, to compensate for time delays in the system. Although a multitude of such models, as well as measuring devices for the neural signals and the EMG, have been proposed, current telemanipulator research has only been considering highly simplified arm models. In the present design, the bilateral constraint that the master and slave are simultaneously compliant to each other's state (equal positions and forces) is abandoned, thus obtaining a simple to analyzesuccession of only locally controlled modules, and a robustness to time delays of up to 500 ms. The proposed designs were inspired by well established physiological evidence that the brain, rather than controlling the movement on-line, programs the arm with an action plan of a complete movement, which is then executed largely in open loop, regulated only by local reflex loops. As a model of the human arm the well-established Stark model is employed, whose mathematical representation is modified to make it suitable for an engineering application. The proposed scheme is however valid for any arm model. BIBO-stability and passivity results for a variety of local control laws are reported. Simulation results and comparisons with traditional designs also highlight the advantages of the proposed design.