871 resultados para Road surfaces
Resumo:
Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary
Resumo:
We describe a simple method to automate the geometric optimization of molecular orbital calculations of supermolecules on potential surfaces that are corrected for basis set superposition error using the counterpoise (CP) method. This method is applied to the H-bonding complexes HF/HCN, HF/H2O, and HCCH/H2O using the 6-31G(d,p) and D95 + + (d,p) basis sets at both the Hartree-Fock and second-order Møller-Plesset levels. We report the interaction energies, geometries, and vibrational frequencies of these complexes on the CP-optimized surfaces; and compare them with similar values calculated using traditional methods, including the (more traditional) single point CP correction. Upon optimization on the CP-corrected surface, the interaction energies become more negative (before vibrational corrections) and the H-bonding stretching vibrations decrease in all cases. The extent of the effects vary from extremely small to quite large depending on the complex and the calculational method. The relative magnitudes of the vibrational corrections cannot be predicted from the H-bond stretching frequencies alone
Resumo:
This report presents the findings and recommendations of the Secondary Road Fund Distribution Advisory Committee (SRFDAC) established by SF 2192 of the 2002 Iowa Acts.
Resumo:
A simple wipe sampling procedure was developed for the surface contamination determination of ten cytotoxic drugs: cytarabine, gemcitabine, methotrexate, etoposide phosphate, cyclophosphamide, ifosfamide, irinotecan, doxorubicin, epirubicin and vincristine. Wiping was performed using Whatman filter paper on different surfaces such as stainless steel, polypropylene, polystyrol, glass, latex gloves, computer mouse and coated paperboard. Wiping and desorption procedures were investigated: The same solution containing 20% acetonitrile and 0.1% formic acid in water gave the best results. After ultrasonic desorption and then centrifugation, samples were analysed by a validated liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring mode. The whole analytical strategy from wipe sampling to LC-MS/MS analysis was evaluated to determine quantitative performance. The lowest limit of quantification of 10 ng per wiping sample (i.e. 0.1 ng cm(-2)) was determined for the ten investigated cytotoxic drugs. Relative standard deviation for intermediate precision was always inferior to 20%. As recovery was dependent on the tested surface for each drug, a correction factor was determined and applied for real samples. The method was then successfully applied at the cytotoxic production unit of the Geneva University Hospitals pharmacy.
Resumo:
This project explores the user costs and benefits of winter road closures. Severe winter weather makes travel unsafe and dramatically increases crash rates. When conditions become unsafe due to winter weather, road closures should allow users to avoid crash costs and eliminate costs associated with rescuing stranded motorists. Therefore, the benefits of road closures are the avoided safety costs. The costs of road closures are the delays that are imposed on motorists and motor carriers who would have made the trip had the road not been closed. This project investigated the costs and benefits of road closures and found that evaluating the benefits and costs is not as simple as it appears. To better understand the costs and benefits of road closures, the project investigates the literature, conducts interviews with shippers and motor carriers, and conducts case studies of road closures to determine what actually occurred on roadways during closures. The project also estimates a statistical model that relates weather severity to crash rates. Although, the statistical model is intended to illustrate the possibility to quantitatively relate measurable and predictable weather conditions to the safety performance of a roadway. In the future, weather conditions such as snow fall intensity, visibility, etc., can be used to make objective measures of the safety performance of a roadway rather than relying on subjective evaluations of field staff. The review of the literature and the interviews clearly illustrate that not all delays (increased travel time) are valued the same. Expected delays (routine delays) are valued at the generalized costs (value of the driver’s time, fuel, insurance, wear and tear on the vehicle, etc.), but unexpected delays are valued much higher because they result in interruption of synchronous activities at the trip’s destination. To reduce the costs of delays resulting from road closures, public agencies should communicate as early as possible the likelihood of a road closure.
Resumo:
An Iowa State University–led team facilitated development of the CP Road Map. They developed a database of existing research. They gathered input, face to face, from the highway community. They identified gaps in research that became the basis for problem statements, which they organized into a cohesive, strategic research plan.
Resumo:
An Iowa State University–led team facilitated development of the CP Road Map. They developed a database of existing research. They gathered input, face to face, from the highway community. They identified gaps in research that became the basis for problem statements, which they organized into a cohesive, strategic research plan.
Resumo:
An Iowa State University–led team facilitated development of the CP Road Map. They developed a database of existing research. They gathered input, face to face, from the highway community. They identified gaps in research that became the basis for problem statements, which they organized into a cohesive, strategic research plan.
Resumo:
Newsletter by the Iowa Department of Vocational Rehabilitation
Resumo:
Monthly newsletter produced by Iowa Department of Vocational Rehabilitation
Resumo:
Monthly newsletter produced by Iowa Department of Vocational Rehabilitation
Resumo:
Monthly newsletter produced by Iowa Department of Vocational Rehabilitation
Resumo:
Monthly newsletter produced by Iowa Department of Vocational Rehabilitation
Resumo:
Monthly newsletter produced by Iowa Department of Vocational Rehabilitation
Resumo:
Monthly newsletter produced by Iowa Department of Vocational Rehabilitation