978 resultados para Retinal Photoreceptor Cell Inner Segment


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Retinopathy, a common complication of diabetes, is characterized by an unbalanced production of nitric oxide (NO), a process regulated by nitric oxide synthase (NOS). We hypothesized that retinopathy might stem from changes in the insulin receptor substrate (IRS)/PI3K/AKT pathway and/or expression of NOS isoforms. Thus, we analysed the morphology and apoptosis index in retinas of obese rats in whom insulin resistance had been induced by a high-fat diet (HFD). Immunoblotting analysis revealed that the retinal tissue of HFD rats had lower levels of AKT1, eNOS and nNOS protein than those of samples taken from control animals. Furthermore, immunohistochemical analyses indicated higher levels of iNOS and 4-hydroxynonenal and a larger number of apoptotic nuclei in HFD rats. Finally, both the inner and outer retinal layers of HFD rats were thinner than those in their control counterparts. When considered alongside previous results, these patterns suggest two major ways in which HFD might impact animals: direct activity of ingested fatty acids and/or via insulin-resistance-induced changes in intracellular pathways. We discuss these possibilities in further detail and advocate the use of this animal model for further understanding relationships between retinopathy, metabolic syndrome and type 2 diabetes. © 2012 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H3]-arginine to L-[H3]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05). Maximum values (P < 0.05) were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates). MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability) being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We performed a quantitative analysis of M and P cell mosaics of the common-marmoset retina. Ganglion cells were labeled retrogradely from optic nerve deposits of Biocytin. The labeling was visualized using horseradish peroxidase (HRP) histochemistry and 3-3'diaminobenzidine as chromogen. M and P cells were morphologically similar to those found in Old- and New-World primates. Measurements were performed on well-stained cells from 4 retinas of different animals. We analyzed separate mosaics for inner and outer M and P cells at increasing distances from the fovea (2.5-9 mm of eccentricity) to estimate cell density, proportion, and dendritic coverage. M cell density decreased towards the retinal periphery in all quadrants. M cell density was higher in the nasal quadrant than in other retinal regions at similar eccentricities, reaching about 740 cells/mm2 at 2.5 mm of temporal eccentricity, and representing 8-14% of all ganglion cells. P cell density increased from peripheral to more central regions, reaching about 5540 cells/mm2 at 2.5 mm of temporal eccentricity. P cells represented a smaller proportion of all ganglion cells in the nasal quadrant than in other quadrants, and their numbers increased towards central retinal regions. The M cell coverage factor ranged from 5 to 12 and the P cell coverage factor ranged from 1 to 3 in the nasal quadrant and from 5 to 12 in the other quadrants. These results show that central and peripheral retinal regions differ in terms of cell class proportions and dendritic coverage, and their properties do not result from simply scaling down cell density. Therefore, differences in functional properties between central and peripheral vision should take these distinct regional retinal characteristics into account.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37) on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively). Three cells (4.5%) were bistratified, having thick dendrites, and the others (95.5%) were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40%) and 2 groups with inner (50-100%) stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In birds, neurons of the isthmo-optic nucleus (ION), as well as ''ectopic'' neurons, send axons to the retina, where they synapse on cells in the inner nuclear layer (INL). Previous work has shown that centrifugal axons can be divided into two anatomically distinct types depending on their mode of termination: either ''convergent'' or ''divergent'' (Ramon y Cajal, 1889; Maturana and Frenk, 1965). We show that cytochrome-oxidase histochemistry specifically labels ''convergent'' centrifugal axons and target neurons which appear to be amacrine cells, as well as three ''types'' of ganglion cells: two types found in the INL (displaced ganglion cells) and one in the ganglion cell layer. Labeled target amacrine cells have distinct darkly labeled ''nests'' of boutons enveloping the somas, are associated with labeled centrifugal fibers, and are confined to central retina. Lesions of the isthmo-optic tract abolish the cytochrome-oxidase labeling in the centrifugal axons and in the target amacrine cells but not in the ganglion cells. Cytochromeoxidase-labeled ganglion cells in the INL are large; one type is oval and similar to the classical displaced ganglion cells of Dogiel, which have been reported to receive centrifugal input; the other type is rounder. Rhodamine beads injected into the accessory optic system results in retrograde label in both types of cells, showing that two distinct types of displaced ganglion cells project to the accessory optic system in chickens. The ganglion cells in the ganglion cell layer that label for cytochrome oxidase also project to the accessory optic system. These have proximal dendrites that ramify in the outer inner plexiform layer. Neither the target amacrine cells nor either of the displaced ganglion cells are immunoreactive for the inhibitory transmitter gamma aminobutyric acid. At least some of the target amacrine cells may, however, be cholinoceptive: we found that the antibody to the alpha-7 subunit of the nicotinic ACh receptor labels a population of cells in the INL that are similar in location, size, and the presence of labeled bouton-like structures to those we find labeled with cytochrome oxidase. This antibody also labels neurons in the ION proper but not ectopic cells. In conclusion, it appears that cytochrome oxidase may be a marker for ''convergent'' centrifugal axons and at least one of their target cells in the INL.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has ail ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working ill the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE. Vascular endothelial growth factor (VEGF) is an important signal protein in vertebrate nervous development, promoting neurogenesis, neuronal patterning, and glial cell growth. Bevacizumab, an anti-VEGF agent, has been extensively used for controlling pathological retinal neovascularization in adult and newborn patients, although its effect on the developing retina remains largely unknown. The purpose of this study was to investigate the effect of bevacizumab on cell death, proliferation, and differentiation in newborn rat retina. METHODS. Retinal explants of sixty 2-day-old Lister hooded rats were obtained after eye enucleation and maintained in culture media with or without bevacizumab for 2 days. Immunohistochemical staining was assessed against proliferating cell nuclear antigen (PCNA, to detect cell proliferation); caspase-3 and beclin-1 (to investigate cell death); and vimentin and glial fibrillary acidic protein (GFAP, markers of glial cells). Gene expressions were quantified by real-time reverse-transcription polymerase chain reaction. Results from treatment and control groups were compared. RESULTS. No significant difference in the staining intensity (on immunohistochemistry) of PCNA, caspase-3, beclin-1, and GFAP, or in the levels of PCNA, caspase-3, beclin-1, and vimentin mRNA was observed between the groups. However, a significant increase in vimentin levels and a significant decrease in GFAP mRNA expression were observed in bevacizumab-treated retinal explants compared with controls. CONCLUSIONS. Bevacizumab did not affect cell death or proliferation in early developing rat retina but appeared to interfere with glial cell maturation by increasing vimentin levels and downregulating GFAP gene expression. Thus, we suggest anti-VEGF agents be used with caution in developing retinal tissue. (Invest Ophthalmol Vis Sci. 2012;53:7904-7911) DOI:10.1167/iovs.12-10283

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuronal circuits in the retina analyze images according to qualitative aspects such as color or motion, before the information is transmitted to higher visual areas of the brain. One example, studied for over the last four decades, is the detection of motion direction in ‘direction selective’ neurons. Recently, the starburst amacrine cell, one type of retinal interneuron, has emerged as an essential player in the computation of direction selectivity. In this study the mechanisms underlying the computation of direction selective calcium signals in starburst cell dendrites were investigated using whole-cell electrical recordings and two-photon calcium imaging. Analysis of the somatic electrical responses to visual stimulation and pharmacological agents indicated that the directional signal (i) is not computed presynaptically to starburst cells or by inhibitory network interactions. It is thus computed via a cell-intrinsic mechanism, which (ii) depends upon the differential, i.e. direction selective, activation of voltage-gated channels. Optically measuring dendritic calcium signals as a function of somatic voltage suggests (iii) a difference in resting membrane potential between the starburst cell’s soma and its distal dendrites. In conclusion, it is proposed that the mechanism underlying direction selectivity in starburst cell dendrites relies on intrinsic properties of the cell, particularly on the interaction of spatio-temporally structured synaptic inputs with voltage-gated channels, and their differential activation due to a somato-dendritic difference in membrane potential.