951 resultados para Retinal Neurons
Resumo:
Treatment of retinal detachment frequently uses biocompatible materials to obtain scleral buckling. These materials are not devoid of consequences on surrounding tissues. In 3 eyes enucleated for failure of surgical treatment using scleral buckling materials, the changes prompted by episcleral implants could be observed. The sclera underwent both an inversion of its curvature and a reduction of its thickness under the material, as well as an encapsulation of the material was observed. While a silicone sponge was used in part to encircle one of these eyes, its capsular inner surface was regular and smooth. In contrast, hydrogel implants used in the three eyes showed a peripheral fragmentation prompting in two of them a typical foreign body giant cell granulomatous reaction. Changes in scleral curvature and scleral thinning were observed reflecting the consequences of the buckling procedure. The capsule formation occurred as it does for any nonabsorbable matérial implanted in tissues. Degradation and fragmentation of the hydrogel material suscitated a granuloma in response to fragments. These hydrogel specific changes should be recognized on microscopic examination of slides of either capsule or eyes previously in contact with this implanted material. They attested of the instability of hydrogel after implantation.
Resumo:
An in vitro model of adult dorsal root ganglion neurons infection by rabies virus is described. Viral marked neurotropism is observed, and the percentage and the degree of infection of the neurons is higher than in non neuronal cells, even if neurons are the minority of the cells in the culture. The neuritic tree is also heavily infected by the virus.
Resumo:
PURPOSE: To determine whether syngeneic retinal cells injected in the vitreous cavity of the rat are able to initiate a proliferative process and whether the ocular inflammation induced in rats by lipopolysaccharide (LPS) promotes this proliferative vitreoretinopathy (PVR). METHODS: Primary cultured differentiated retinal Müller glial (RMG) and retinal pigmented epithelial (RPE) cells isolated from 8 to 12 postnatal Lewis rats were injected into the vitreous cavity of 8- to 10-week-old Lewis rats (10(5) cells/eye in 2 microlieter sterile saline), with or without the systemic injection of 150 microgram LPS to cause endotoxin-induced uveitis (EIU). Control groups received an intravitreal injection of 2 microliter saline. At 5, 15, and 28 days after cell injections, PVR was clinically quantified, and immunohistochemistry for OX42, ED1, vimentin (VIM), glial fibrillary acidic protein (GFAP), and cytokeratin was performed. RESULTS: The injection of RMG cells, alone or in combination with RPE cells, induced the preretinal proliferation of a GFAP-positive tissue, that was enhanced by the systemic injection of LPS. Indeed, when EIU was induced at the time of RMG cell injection into the vitreous cavity, the proliferation led to retinal folds and localized tractional detachments. In contrast, PVR enhanced the infiltration of inflammatory cells in the anterior segment of the eye. CONCLUSIONS: In the rat, syngeneic retinal cells of glial origin induce PVR that is enhanced by the coinduction of EIU. In return, vitreoretinal glial proliferation enhanced the intensity and duration of EIU.
Resumo:
Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.
Resumo:
In vivo imaging of green fluorescent protein (GFP)-labeled neurons in the intact brain is being used increasingly to study neuronal plasticity. However, interpreting the observed changes as modifications in neuronal connectivity needs information about synapses. We show here that axons and dendrites of GFP-labeled neurons imaged previously in the live mouse or in slice preparations using 2-photon laser microscopy can be analyzed using light and electron microscopy, allowing morphological reconstruction of the synapses both on the imaged neurons, as well as those in the surrounding neuropil. We describe how, over a 2-day period, the imaged tissue is fixed, sliced and immuno-labeled to localize the neurons of interest. Once embedded in epoxy resin, the entire neuron can then be drawn in three dimensions (3D) for detailed morphological analysis using light microscopy. Specific dendrites and axons can be further serially thin sectioned, imaged in the electron microscope (EM) and then the ultrastructure analyzed on the serial images.
Resumo:
In addition to functionally affected neuronal signaling pathways, altered axonal, dendritic, and synaptic morphology may contribute to hippocampal hyperexcitability in chronic mesial temporal lobe epilepsies (MTLE). The sclerotic hippocampus in Ammon's horn sclerosis (AHS)-associated MTLE, which shows segmental neuronal cell loss, axonal reorganization, and astrogliosis, would appear particularly susceptible to such changes. To characterize the cellular hippocampal pathology in MTLE, we have analyzed hilar neurons in surgical hippocampus specimens from patients with MTLE. Anatomically well-preserved hippocampal specimens from patients with AHS (n = 44) and from patients with focal temporal lesions (non-AHS; n = 20) were studied using confocal laser scanning microscopy (CFLSM) and electron microscopy (EM). Hippocampal samples from three tumor patients without chronic epilepsies and autopsy samples were used as controls. Using intracellular Lucifer Yellow injection and CFLSM, spiny pyramidal, multipolar, and mossy cells as well as non-spiny multipolar neurons have been identified as major hilar cell types in controls and lesion-associated MTLE specimens. In contrast, none of the hilar neurons from AHS specimens displayed a morphology reminiscent of mossy cells. In AHS, a major portion of the pyramidal and multipolar neurons showed extensive dendritic ramification and periodic nodular swellings of dendritic shafts. EM analysis confirmed the altered cellular morphology, with an accumulation of cytoskeletal filaments and increased numbers of mitochondria as the most prominent findings. To characterize cytoskeletal alterations in hilar neurons further, immunohistochemical reactions for neurofilament proteins (NFP), microtubule-associated proteins, and tau were performed. This analysis specifically identified large and atypical hilar neurons with an accumulation of low weight NFP. Our data demonstrate striking structural alterations in hilar neurons of patients with AHS compared with controls and non-sclerotic MTLE specimens. Such changes may develop during cellular reorganization in the epileptogenic hippocampus and are likely to contribute to the pathogenesis or maintenance of temporal lobe epilepsy.
Resumo:
PURPOSE: Corticosteroids have recorded beneficial clinical effects and are widely used in medicine. In ophthalmology, besides their treatment benefits, side effects, including ocular toxicity have been observed especially when intraocular delivery is used. The mechanism of these toxic events remains, however, poorly understood. In our present study, we investigated the mechanisms and potential pathways of corticosteroid-induced retinal cell death. METHODS: Rats were sacrificed 24 h and 8 days after an intravitreous injection of 1 microl (40 microg) of Kenacort Retard. The eyes were processed for ultra structure analysis and detection of activated caspase-3, cytochrome-C, apoptosis-inducing factor (AIF), LEI-L-Dnase II, terminal transferase dUTP nick end labeling (TUNEL), and microtubule-associated protein 1-light chain 3 (MAP-LC3). In vitro, rat retinal pigment epithelial cells (RPE), retinal Müller glial cells (RMG) and human ARPE-19 cells were treated with triamcinolone acetonide (TA) or other glucocorticoids. Cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) assay and cell counts. Nuclei staining, TUNEL assay, annexin-V binding, activated caspase-3 and lactate dehydrogenase (LDH) production characterized cell death. Localization of cytochrome-C, AIF, LEI-and L-Dnase II, and staining with MAP-LC3 or monodansylcadaverine were also carried out. Finally, ARPE-19 cells transfected with AIP-1/Alix were exposed to TA. RESULTS: In vitro incubation of retinal cell in the presence of corticosteroids induced a specific and dose-dependent reduction of cell viability. These toxic events were not associated with the anti-inflammatory activity of these compounds but depended on the hydro solubility of their formulation. Before cell death, extensive cytoplasmic vacuolization was observed in the retinal pigment epithelial (RPE) cells in vivo and in vitro. The cells however, did not show known caspase-dependent or caspase-independent apoptotic reactions. These intracellular vacuoles were negative for MAP-LC3 but some stained positive for monodansylcadaverine. Furthermore, over expression of AIP-1/Alix inhibited RPE cell death. CONCLUSIONS: These observations suggest that corticosteroid-induced retinal cell death may be carried out mainly through a paraptosis pathway.
Resumo:
BACKGROUND: Persisting metallic intraocular foreign bodies (IOFB) with a ferrous content have been associated with ocular siderosis and retinal degeneration. We describe two patients in whom a metallic IOFB containing iron was left embedded for many years in the choroid and sclera after having penetrated through the vitreous and the retina. HISTORY AND SIGNS: Two male patients, aged 41 and 48 years, presented with a metallic IOFB sustained during a work accident involving metal tools. THERAPY AND OUTCOME: For the first patient it was deemed unwise to operate, as the IOFB was also lodged very deeply in the choroid and sclera in the inferior temporal quadrant. The second patient underwent pars plana vitrectomy, but the IOFB could not be removed surgically as it was too deeply embedded in the sclera and choroid. After a period of 6 years (Case 1) and 4 years (Case 2) of follow-up, visual acuity remained at 1.0 and the IOFB was encased in a fibrotic capsule in both cases. Full-field and multifocal electroretinograms showed an inter-ocular asymmetry at baseline, which remained stable during the follow-up. CONCLUSIONS: Ocular siderosis may not develop in patients with a deeply embedded metallic IOFB. Regular monitoring of both visual function and the electroretinogram is mandatory when the IOFB is left inside the eye.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a dose-dependent, persistent stimulation of the enzymes choline acetyltransferase (ChAT), glutamic acid decarboxylase and glutamine synthetase. After elimination of the proliferating cells by treatment of the cultures with Ara-C (0.4 microM) only the cholinergic marker enzyme, ChAT, could be stimulated by tumor promoters. The non-promoting phorbol ester, 4 alpha-phorbol 12,13-didecanoate proved to be inactive in these cultures, whereas the potent non-phorbol tumor promoter, mezerein, produced an even greater stimulatory effect than PMA. Since PMA and mezerein are potent and specific activators of protein kinase C, the present results suggest a role for this second messenger in the development of cholinergic telencephalon neurons. Stimulation of ChAT required prolonged exposure (48 h) of the cultures to PMA and the responsiveness of the cholinergic neurons to the tumor promoters decreased with progressive cellular maturation. The cholinergic telencephalon neurons showed the same pattern of responsiveness for tumor promoters as for nerve growth factor (NGF). However, the combined treatment with NGF and either PMA or mezerein produced an additive stimulatory effect, suggesting somewhat different mechanisms of action.
Resumo:
During brain development, spontaneous neuronal activity has been shown to play a crucial role in the maturation of neuronal circuitries. Activity-related signals may cause selective neuronal cell death and/or rearrangement of neuronal connectivity. To study the effects of sustained inhibitory activity on developing inhibitory (GABAergic) neurons, three-dimensional primary cell cultures of fetal rat telencephalon were used. In relatively immature cultures, muscimol (10 microns), a GABAA receptor agonist, induced a transient increase in apoptotic cell death, as evidenced by a cycloheximide-sensitive increase of free nucleosomes and an increased frequency of DNA double strand breaks (TUNEL labeling). Furthermore, muscimol caused an irreversible reduction of glutamic acid decarboxylase activity, indicating a loss of GABAergic neurons. The muscimol-induced death of GABAergic neurons was attenuated by the GABAA receptor blockers bicuculline (100 microns) and picrotoxin (100 microns), by depolarizing potassium concentrations (30 mM KCl) and by the L-type calcium channel activator BAY K8644 (2 microns). As compared to the cholinergic marker (choline acetyltransferase activity), glutamic acid decarboxylase activity was significantly more affected by various agents known to inhibit neuronal activity, including tetrodotoxin (1 micron), flunarizine (5 microns), MK 801 (50 microns) and propofol (40 microns). The present results suggest that the survival of a subpopulation of immature GABAergic neurons is dependent on sustained neuronal activity and that these neurons may undergo apoptotic cell death in response to GABAA autoreceptor activation.
Resumo:
The retinal pigment epithelium (RPE) is constantly exposed to external injuries which lead to degeneration, dysfunction or loss of RPE cells. The balance between RPE cells death and proliferation may be responsible for several diseases of the underlying retina, including age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Signaling pathways able to control cells proliferation or death usually involve the MAPK (mitogen-activated protein kinases) pathways, which modulate the activity of transcription factors by phosphorylation. UV exposure induces DNA breakdown and causes cellular damage through the production of reactive oxygen species (ROS) leading to programmed cell death. In this study, human retinal pigment epithelial cells ARPE19 were exposed to 100 J/m(2) of UV-C and MAPK pathways were studied. We first showed the expression of the three major MAPK pathways. Then we showed that activator protein-1 (AP-1) was activated through phosphorylation of cJun and cFos, induced by JNK and p38, respectively. Specific inhibitors of both kinases decreased their respective activities and phosphorylation of their nuclear targets (cJun and cFos) and reduced UV-induced cell death. The use of specific kinases inhibitors may provide excellent tools to prevent RPE apoptosis specifically in RPE diseases involving ROS and other stress-related compounds such as in AMD.
Resumo:
Prepro-RFRP-containing neurons have recently been described in the mammalian brain. These neurons are only found in the tuberal hypothalamus. In this work, we have provided a detailed analysis of the distribution of cells expressing the RFRP mRNA, and found them in seven anatomical structures of the tuberal hypothalamus. No co-expression with melanin-concentrating hormone (MCH) or hypocretin (Hcrt), that are also described in neurons of the tuberal hypothalamus, was observed. Using the BrdU method, we found that all RFRP cell bodies are generated between E13 and E14. Thus, RFRP neurons form a specific cell population with a complex distribution pattern in the tuberal hypothalamus. However, they are generated in one peak. These observations are discussed with data concerning the distribution and genesis of the MCH and Hcrt cell populations that are also distributed in the tuberal hypothalamus.
Resumo:
AIMS/HYPOTHESIS: Diabetic macular edema represents the main cause of visual loss in diabetic retinopathy. Besides inner blood retinal barrier breakdown, the role of the outer blood retinal barrier breakdown has been poorly analyzed. We characterized the structural and molecular alterations of the outer blood retinal barrier during the time course of diabetes, focusing on PKCζ, a critical protein for tight junction assembly, known to be overactivated by hyperglycemia. METHODS: Studies were conducted on a type2 diabetes Goto-Kakizaki rat model. PKCζ level and subcellular localization were assessed by immunoblotting and immunohistochemistry. Cell death was detected by TUNEL assays. PKCζ level on specific layers was assessed by laser microdissection followed by Western blotting. The functional role of PKCζ was then evaluated in vivo, using intraocular administration of its specific inhibitor. RESULTS: PKCζ was localized in tight junction protein complexes of the retinal pigment epithelium and in photoreceptors inner segments. Strikingly, in outer segment PKCζ staining was restricted to cone photoreceptors. Short-term hyperglycemia induced activation and delocalization of PKCζ from both retinal pigment epithelium junctions and cone outer segment. Outer blood retinal barrier disruption and photoreceptor cone degeneration characterized long-term hyperglycemia. In vivo, reduction of PKCζ overactivation using a specific inhibitor, restored its tight-junction localization and not only improved the outer blood retinal barrier, but also reduced photoreceptor cell-death. CONCLUSIONS: In the retina, hyperglycemia induced overactivation of PKCζ is associated with outer blood retinal barrier breakdown and photoreceptor degeneration. In vivo, short-term inhibition of PKCζ restores the outer barrier structure and reduces photoreceptor cell death, identifying PKCζ as a potential target for early and underestimated diabetes-induced retinal pathology.
Resumo:
MCT2 is the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate. It is suggested that MCT2 is upregulated to meet enhanced energy demands after modifications in synaptic transmission. Brain-derived neurotrophic factor (BDNF), a promoter of synaptic plasticity, significantly increased MCT2 protein expression in cultured cortical neurons (as shown by immunocytochemistry and western blot) through a translational regulation at the synaptic level. Brain-derived neurotrophic factor can cause translational activation through different signaling pathways. Western blot analyses showed that p44/p42 mitogen-activated protein kinase (MAPK), Akt, and S6 were strongly phosphorylated on BDNF treatment. To determine by which signal transduction pathway(s) BDNF mediates its upregulation of MCT2 protein expression, the effect of specific inhibitors for p38 MAPK, phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), p44/p42 MAPK (ERK), and Janus kinase 2 (JAK2) was evaluated. It could be observed that the BDNF-induced increase in MCT2 protein expression was almost completely blocked by all inhibitors, except for JAK2. These data indicate that BDNF induces an increase in neuronal MCT2 protein expression by a mechanism involving a concomitant stimulation of PI3K/Akt/mTOR/S6, p38 MAPK, and p44/p42 MAPK. Moreover, our observations suggest that changes in MCT2 expression could participate in the process of synaptic plasticity induced by BDNF.