950 resultados para Resisting moment
Resumo:
Hoof abrasion and slips on floors are known to have negative effects on animal health and welfare. This paper describes a new design of test rig for use in a universal materials test machine. The rig enables the frictional and abrasion-resisting properties of hoof horn to be investigated under controlled conditions, in vitro. To assess the performance of the rig, pilot experiments were carried out which indicated both test surface roughness and specimen hydration interact to alter frictional coefficient and mechanical work done to lose a unit volume of hoof material by abrasive wear.
Resumo:
The mean state, variability and extreme variability of the stratospheric polar vortices, with an emphasis on the Northern Hemisphere vortex, are examined using 2-dimensional moment analysis and Extreme Value Theory (EVT). The use of moments as an analysis to ol gives rise to information about the vortex area, centroid latitude, aspect ratio and kurtosis. The application of EVT to these moment derived quantaties allows the extreme variability of the vortex to be assessed. The data used for this study is ECMWF ERA-40 potential vorticity fields on interpolated isentropic surfaces that range from 450K-1450K. Analyses show that the most extreme vortex variability occurs most commonly in late January and early February, consistent with when most planetary wave driving from the troposphere is observed. Composites around sudden stratospheric warming (SSW) events reveal that the moment diagnostics evolve in statistically different ways between vortex splitting events and vortex displacement events, in contrast to the traditional diagnostics. Histograms of the vortex diagnostics on the 850K (∼10hPa) surface over the 1958-2001 period are fitted with parametric distributions, and show that SSW events comprise the majority of data in the tails of the distributions. The distribution of each diagnostic is computed on various surfaces throughout the depth of the stratosphere, and shows that in general the vortex becomes more circular with higher filamentation at the upper levels. The Northern Hemisphere (NH) and Southern Hemisphere (SH) vortices are also compared through the analysis of their respective vortex diagnostics, and confirm that the SH vortex is less variable and lacks extreme events compared to the NH vortex. Finally extreme value theory is used to statistically mo del the vortex diagnostics and make inferences about the underlying dynamics of the polar vortices.
Resumo:
This article presents a reinterpretation of James Harrington's writings. It takes issue with J. G. A. Pocock's reading, which treats him as importing into England a Machiavellian ‘language of political thought’. This reading is the basis of Pocock's stress on the republicanism of eighteenth-century opposition values. Harrington's writings were in fact a most implausible channel for such ideas. His outlook owed much to Stoicism. Unlike the Florentine, he admired the contemplative life; was sympathetic to commerce; and was relaxed about the threat of ‘corruption’ (a concept that he did not understand). These views can be associated with his apparent aims: the preservation of a national church with a salaried but politically impotent clergy; and the restoration of the royalist gentry to a leading role in English politics. Pocock's hypothesis is shown to be conditioned by his method; its weaknesses reflect some difficulties inherent in the notion of ‘languages of thought’.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.
Resumo:
Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η =
Resumo:
A solution to a version of the Stieltjes moment. problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion. (C) 2009 Elsevier B.V. All rights reserved.