987 resultados para Renin-angiotensin- aldosterone system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rupture of vulnerable plaques is the main cause of acute cardiovascular events. However, mechanisms responsible for transforming a stable into a vulnerable plaque remain elusive. Angiotensin II, a key regulator of blood pressure homeostasis, has a potential role in atherosclerosis. To study the contribution of angiotensin II in plaque vulnerability, we generated hypertensive hypercholesterolemic ApoE-/- mice with either normal or endogenously increased angiotensin II production (renovascular hypertension models). Hypertensive high angiotensin II ApoE-/- mice developed unstable plaques, whereas in hypertensive normal angiotensin II ApoE-/- mice plaques showed a stable phenotype. Vulnerable plaques from high angiotensin II ApoE-/- mice had thinner fibrous cap (P<0.01), larger lipid core (P<0.01), and increased macrophage content (P<0.01) than even more hypertensive but normal angiotensin II ApoE-/- mice. Moreover, in mice with high angiotensin II, a skewed T helper type 1-like phenotype was observed. Splenocytes from high angiotensin II ApoE-/- mice produced significantly higher amounts of interferon (IFN)-gamma than those from ApoE-/- mice with normal angiotensin II; secretion of IL4 and IL10 was not different. In addition, we provide evidence for a direct stimulating effect of angiotensin II on lymphocyte IFN-gamma production. These findings suggest a new mechanism in plaque vulnerability demonstrating that angiotensin II, within the context of hypertension and hypercholesterolemia, independently from its hemodynamic effect behaves as a local modulator promoting the induction of vulnerable plaques probably via a T helper switch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II can raise blood pressure rapidly by inducing direct vasoconstriction and by activating the sympathetic nervous system via central and peripheral mechanisms. In addition, this peptide may act as a growth factor to cause vascular and cardiac hypertrophy (CVH). The structural changes caused by hypertension can therefore be amplified by angiotensin II. Blockade of angiotensin II generation with angiotensin-converting enzyme (ACE) inhibitors appears to be particularly effective in preventing the development of cardiovascular hypertrophy. This beneficial effect might be related to some extent to local accumulation of bradykinin. ACE is one of the enzymes physiologically involved in bradykinin degradation. Treatment of hypertensive rats with a selective bradykinin antagonist can attenuate the blood pressure-lowering effect of ACE inhibition and render less effective the prevention of intimal thickening after endothelial removal from the rat carotid artery. Bradykinin is a vasodilator that acts by increasing the release of endothelium-derived factors such as nitric oxide and prostacyclin, which may have antiproliferative activity. However, blockade of the renin-angiotensin system with an angiotensin II subtype 1-receptor antagonist is also effective in preventing cardiac hypertrophy and neointimal proliferation after endothelial injury. Therefore, the exact contribution of bradykinin to the beneficial effects of ACE inhibition on cardiovascular hypertrophy remains to be further explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To elucidate the local formation of angiotensin II (Ang II) in the neurons of sensory dorsal root ganglia (DRG), we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of protein renin, Ang II, Substance P and calcitonin gene-related peptide (CGRP) in the rat and human thoracic DRG. Quantitative real time PCR (qRT-PCR) studies revealed that rat DRG expressed substantial amounts of Ang-N- and ACE mRNA, while renin mRNA as well as the protein renin were untraceable. Cathepsin D-mRNA and cathepsin D-protein were detected in the rat DRG indicating the possibility of existence of pathways alternative to renin for Ang I formation. Angiotensin peptides were successfully detected with high performance liquid chromatography and radioimmunoassay in human DRG extracts. In situ hybridization in rat DRG confirmed additionally expression of Ang-N mRNA in the cytoplasm of numerous neurons. Intracellular Ang II staining could be shown in number of neurons and their processes in both the rat and human DRG. Interestingly we observed neuronal processes with angiotensinergic synapses en passant, colocalized with synaptophysin, within the DRG. In the DRG, we also identified by qRT-PCR, expression of Ang II receptor AT(1A) and AT(2)-mRNA while AT(1B)-mRNA was not traceable. In some neurons Substance P and CGRP were found colocalized with Ang II. The intracellular localization and colocalization of Ang II with Substance P and CGRP in the DRG neurons may indicate a participation and function of Ang II in the regulation of nociception. In conclusion, these results suggest that Ang II may be produced locally in the neurons of rat and human DRG and act as a neurotransmitter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve hemodynamics in some patients with congestive heart failure. It is now possible to antagonize chronically angiotensin II at its receptor using the non-peptide angiotensin II inhibitor losartan (DuP 753, MK 954). When administered by mouth, this compound induces a dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the active metabolite E3174. Preliminary studies performed in hypertensive patients suggest that losartan has a blood pressure lowering action equivalent to that of an ACE inhibitor. Whether this compound will compare favorably with ACE inhibitors requires however further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms responsible for atherosclerotic plaque development, destabilization, and rupture are still largely unknown. Angiotensin II, the main bioactive peptide of renin angiotensin system, has been shown to be critically involved in the pathogenesis of atherosclerosis and vulnerable plaque. Experimental studies in hypercholesterolemic mouse models with high circulating Angiotensin II levels, provide direct evidence that Angiotensin II induces plaque vulnerability partly by 1/ downregulating vascular expression of anti-atherosclerotic genes and/or upregulating expression of pro-atherosclerotic genes, and 2/ skewing the systemic lymphocyte Th1/Th2 balance towards a proinflammatory Th1 response in early disease phase. Further understanding the pro-atherosclerotic mechanisms of Angiotensin II and associated signaling pathways will help to design better therapeutic strategies for reducing the burden of atherosclerotic cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the renin inhibitor enalkiren (Abbott-64662) was evaluated in eight normal volunteer subjects on a standardized sodium diet (100 mmol/day) by measurement of various components of the renin-angiotensin system and drug levels in plasma. On day 1, vehicle and doses of 0.001, 0.003, and 0.01 mg/kg i.v. were administered within 2 minutes at 90-minute intervals. On day 2, vehicle and doses of 0.01, 0.03, and 0.1 mg/kg i.v. were given. With the higher doses, blood pressure tended to decrease slightly with no change in heart rate. Plasma renin activity and plasma angiotensin-(1-8)octapeptide (angiotensin II) fell markedly in a dose-dependent manner. Inhibition of plasma renin activity was maximal 5 minutes after administration of the drug and persisted 90 minutes after the doses of 0.03 and 0.1 mg/kg. Not surprisingly, there was a close correlation between plasma renin activity and plasma angiotensin II levels (r = 0.81, n = 28, p less than 0.001). In contrast, active and total renin measured directly by monoclonal antibodies rose in dose-related fashion in response to renin inhibition. Pharmacokinetic parameters were calculated using the plasma drug concentrations obtained up to 6 hours after the 0.1 mg/kg dose. By means of a two-compartment model, plasma mean half-life of the drug was estimated at 1.60 +/- 0.43 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heptapeptide angiotensin-(1-7) is considered to be a biologically active endproduct of the renin-angiotensin system. This angiotensin, which is devoid of the most known actions of angiotensin II such as induction of drinking behavior and vasoconstriction, has several selective effects in the brain and periphery. In the present article we briefly review recent evidence for a physiological role of angiotensin-(1-7) in the control of hydroelectrolyte balance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the angiotensin II (Ang II)-generating system by analyzing the vasoconstrictor effect of Ang II, angiotensin I (Ang I), and tetradecapeptide (TDP) renin substrate in the absence and presence of inhibitors of the renin-angiotensin system in isolated rat aortic rings and mesenteric arterial beds with and without functional endothelium. Ang II, Ang I, and TDP elicited a dose-dependent vasoconstrictor effect in both vascular preparations that was completely blocked by the Ang II receptor antagonist saralasin (50 nM). The angiotensin converting enzyme (ACE) inhibitor captopril (36 µM) completely inhibited the vasoconstrictor effect elicited by Ang I and TDP in aortic rings without affecting that of Ang II. In contrast, captopril (36 µM) significantly reduced (80-90%) the response to bolus injection of Ang I, without affecting those to Ang II and TDP in mesenteric arteries. Mechanical removal of the endothelium greatly potentiated (70-95%) the vasoconstrictor response to Ang II, Ang I, and TDP in aortic rings while these responses were unaffected by the removal of the endothelium of mesenteric arteries with sodium deoxycholate infusion. In addition, endothelium disruption did not change the pattern of response elicited by these peptides in the presence of captopril. These findings indicate that the endothelium may not be essential for Ang II formation in rat mesenteric arteries and aorta, but it may modulate the response to Ang II. Although Ang II formation from Ang I is essentially dependent on ACE in both vessels, our results suggest the existence of an alternative pathway in the mesenteric arterial bed that may play an important role in Ang II generation from TDP in resistance but not in large vessels during ACE inhibition

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in angiotensin-converting enzyme (ACE) activity has been observed in the heart after myocardial infarction (MI). Since most studies have been conducted in chronically infarcted individuals exhibiting variable degrees of heart failure, the present study was designed to determine ACE activity in an earlier phase of MI, before heart failure development. MI was produced in 3-month old male Wistar rats by ligation of the anterior branches of the left coronary artery, control rats underwent sham surgery and the animals were studied 7 or 15 days later. Hemodynamic data obtained for the anesthetized animals showed normal values of arterial blood pressure and of end-diastolic pressure in the right and left ventricular cavities of MI rats. Right and left ventricular (RV, LV) muscle and scar tissue homogenates were prepared to determine ACE activity in vitro by measuring the velocity of His-Leu release from the synthetic substrate Hyp-His-Leu. ACE activity was corrected to the tissue wet weight and is reported as nmol His-Leu g-1 min-1. No significant change in ACE activity in the RV homogenates was demonstrable. A small nonsignificant increase of ACE activity (11 &plusmn; 9%; P0.05) was observed 7 days after MI in the surviving left ventricular muscle. Two weeks after surgery, however, ACE activity was 46 &plusmn; 11% (P<0.05) higher in infarcted rats compared to sham-operated rats. The highest ACE activity was demonstrable in the scar tissue homogenate. In rats studied two weeks after surgery, ACE activity in the LV muscle increased from 105 &plusmn; 7 nmol His-Leu g-1 min-1 in control hearts to 153 &plusmn; 11 nmol His-Leu g-1 min-1 (P<0.05) in the remaining LV muscle of MI rats and to 1051 &plusmn; 208 nmol His-Leu g-1 min-1 (P<0.001) in the fibrous scar. These data indicate that ACE activity increased in the heart after infarction before heart failure was demonstrable by hemodynamic measurements. Since the blood vessels of the scar drain to the remaining LV myocardium, the high ACE activity present in the fibrous scar may increase the angiotensin II concentration and decrease bradykinin in the cardiac tissues surrounding the infarcted area. The increased angiotensin II in the fibrous scar may contribute to the reactive fibrosis and hypertrophy in the left ventricular muscle surviving infarction

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence that angiotensin-(1-7) (Ang-(1-7)) is an endogenous biologically active component of the renin-angiotensin system (RAS). In the present study, we investigated the effects of Ang-(1-7) on reperfusion arrhythmias in isolated rat hearts. Isolated rat hearts were perfused with two different media, i.e., Krebs-Ringer (2.52 mM CaCl2) and low-Ca2+ Krebs-Ringer (1.12 mM CaCl2). In hearts perfused with Krebs-Ringer, Ang-(1-7) produced a concentration-dependent (27-210 nM) reduction in coronary flow (25% reduction at highest concentration), while only slight and variable changes in contraction force and heart rate were observed. Under the same conditions, angiotensin II (Ang II; 27 and 70 nM) produced a significant reduction in coronary flow (39% and 48%, respectively) associated with a significant increase in force. A decrease in heart rate was also observed. In low-Ca2+ Krebs-Ringer solution, perfusion with Ang-(1-7) or Ang II at 27 nM concentration produced similar changes in coronary flow, contraction force and heart rate. In isolated hearts perfused with normal Krebs-Ringer, Ang-(1-7) produced a significant enhancement of reperfusion arrhythmias revealed by an increase in the incidence and duration of ventricular tachycardia and ventricular fibrillation (more than 30-min duration). The facilitation of reperfusion arrhythmias by Ang-(1-7) was associated with an increase in the magnitude of the decreased force usually observed during the post-ischemic period. The effects of Ang-(1-7) were abolished in isolated rat hearts perfused with low-Ca2+ Krebs-Ringer. The effect of Ang II (27 nM) was similar but less pronounced than that of Ang-(1-7) at the same concentration. These results indicate that the heart is a site of action for Ang-(1-7) and suggest that this heptapeptide may be involved in the mediation of the cardiac effects of the RAS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulating evidence suggests that angiotensin-(1-7) (Ang-(1-7)) is an important component of the renin-angiotensin system and that the actions of the peptide may either contribute to or oppose those of Ang II. Ang-(1-7) can be converted directly from Ang I bypassing prerequisite formation of Ang II. Formation of Ang-(1-7) is under the control of at least three endopeptidases depending on the tissue compartment and include neprilysin, thimet oligopeptidase and prolyl oligopeptidase. Both neprilysin and thimet oligopeptidase are also involved in the metabolism of bradykinin and the atrial natriuretic peptide. Moreover, recent studies suggest that in addition to Ang I and bradykinin, Ang-(1-7) is an endogenous substrate for angiotensin converting enzyme. These enzymatic pathways may contribute to a complex relationship between the hypertensive actions of Ang II and various vasodepressor peptides from either the renin-angiotensin system or other peptide systems. Ang-(1-7) is devoid of the vasoconstrictor, central pressor, or thirst-stimulating actions associated with Ang II. In fact, new findings reveal depressor, vasodilator, and antihypertensive actions that may be more apparent in hypertensive animals or humans. Thus, Ang-(1-7) may oppose the actions of Ang II directly or as a result of increasing prostaglandins or nitric oxide. In this review, we examine the mechanisms by which Ang-(1-7) may contribute to cardiovascular regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study we evaluated the nature of angiotensin receptors involved in the antidiuretic effect of angiotensin-(1-7) (Ang-(1-7)) in water-loaded rats. Water diuresis was induced in male Wistar rats weighing 280 to 320 g by water load (5 ml/100 g body weight by gavage). Immediately after water load the rats were treated subcutaneously with (doses are per 100 g body weight): 1) vehicle (0.05 ml 0.9% NaCl); 2) graded doses of 20, 40 or 80 pmol Ang-(1-7); 3) 200 nmol Losartan; 4) 200 nmol Losartan combined with 40 pmol Ang-(1-7); 5) 1.1 or 4.4 nmol A-779; 6) 1.1 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 7) 4.4 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 8) 95 nmol CGP 42112A, or 9) 95 nmol CGP 42112A combined with 40 pmol Ang-(1-7). The antidiuretic effect of Ang-(1-7) was associated with an increase in urinary Na+ concentration, an increase in urinary osmolality and a reduction in creatinine clearance (CCr: 0.65 ± 0.04 ml/min vs 1.45 ± 0.18 ml/min in vehicle-treated rats, P<0.05). A-779 and Losartan completely blocked the effect of Ang-(1-7) on water diuresis (2.93 ± 0.34 ml/60 min and 3.39 ± 0.58 ml/60 min, respectively). CGP 42112A, at the dose used, did not modify the antidiuretic effect of Ang-(1-7). The blockade produced by Losartan was associated with an increase in CCr and with an increase in sodium and water excretion as compared with Ang-(1-7)-treated rats. When Ang-(1-7) was combined with A-779 there was an increase in CCr and natriuresis and a reduction in urine osmolality compared with rats treated with Ang-(1-7) alone. The observation that both A-779, which does not bind to AT1 receptors, and Losartan blocked the effect of Ang-(1-7) suggests that the kidney effects of Ang-(1-7) are mediated by a non-AT1 angiotensin receptor that is recognized by Losartan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown that the renin-angiotensin system (RAS) is involved in glucose homeostasis during acute hemorrhage. Since almost all of the physiological actions described for angiotensin II were mediated by AT1 receptors, the present experiments were designed to determine the participation of AT1 receptors in the hyperglycemic action of angiotensin II in freely moving rats. The animals were divided into two experimental groups: 1) animals submitted to intravenous administration of angiotensin II (0.96 nmol/100 g body weight) which caused a rapid increase in plasma glucose reaching the highest values at 5 min after the injection (33% of the initial values, P<0.01), and 2) animals submitted to intravenous administration of DuP-753 (losartan), a non-peptide antagonist of angiotensin II with AT1-receptor type specificity (1.63 µmol/100 g body weight as a bolus, iv, plus a 30-min infusion of 0.018 µmol 100 g body weight-1 min-1 before the injection of angiotensin II), which completely blocked the hyperglycemic response to angiotensin II (P<0.01). This inhibitory effect on glycemia was already demonstrable 5 min (8.9 ± 0.28 mM, angiotensin II, N = 9 vs 6.4 ± 0.22 mM, losartan plus angiotensin II, N = 11) after angiotensin II injection and persisted throughout the 30-min experiment. Controls were treated with the same volume of saline solution (0.15 M NaCl). These data demonstrate that the angiotensin II receptors involved in the direct and indirect hyperglycemic actions of angiotensin II are mainly of the AT1-type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The excessive stimulation of beta-adrenergic receptors in the heart induces myocardial hypertrophy. There are several experimental data suggesting that this hypertrophy may also depend, at least partially, on the increase of local production of angiotensin II secondary to the activation of the cardiac renin-angiotensin system. In this study we investigated the effects of isoproterenol on the activity of angiotensin-converting enzyme (ACE) in the heart and also in the aorta and plasma. Male Wistar rats weighing 250 to 305 g were treated with a dose of (±)-isoproterenol (0.3 mg kg-1 day-1, N = 8) sufficient to produce cardiac hypertrophy without deleterious effects on the pumping capacity of the heart. Control rats (N = 7) were treated with vehicle (corn oil). The animals were killed one week later. ACE activity was determined in vitro in the four cardiac chambers, aorta and plasma by a fluorimetric assay. A significant hypertrophy was observed in both ventricular chambers. ACE activity in the atria remained constant after isoproterenol treatment. There was a significant increase (P<0.05) of ACE activity in the right ventricle (6.9 ± 0.9 to 8.2 ± 0.6 nmol His-Leu g-1 min-1) and in the left ventricle (6.4 ± 1.1 to 8.9 ± 0.8 nmol His-Leu g-1 min-1). In the aorta, however, ACE activity decreased (P<0.01) after isoproterenol (41 ± 3 to 27 ± 2 nmol His-Leu g-1 min-1) while it remained unchanged in the plasma. These data suggest that ACE expression in the heart can be increased by stimulation of beta-adrenoceptors. However, this effect is not observed on other local renin-angiotensin systems, such as the aorta. Our data also suggest that the increased sympathetic discharge and the elevated plasma concentration of catecholamines may contribute to the upregulation of ACE expression in the heart after myocardial infarction and heart failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin-converting enzyme (ACE) plays a central role in cardiac remodeling associated with pathological conditions such as myocardial infarction. The existence of different cell types in the heart expressing components of the renin-angiotensin system makes it difficult to evaluate their relative role under physiological and pathological conditions. Since myocytes are the predominant cellular constituent of the heart by mass, in the present study we studied the effects of glucocorticoids on ACE activity using well-defined cultures of neonatal rat cardiac myocytes. Under steady-state conditions, ACE activity was present at very low levels, but after dexamethasone treatment ACE activity increased significantly (100 nmol/l after 24 h) in a time-dependent fashion. These results demonstrate the influence of dexamethasone on ACE activity in rat cardiac myocytes. This is consistent with the idea that ACE activation occurs under stress conditions, such as myocardial infarction, in which glucocorticoid levels may increase approximately 50-fold.