996 resultados para Relativistic wave equation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the spin of the electron in a non-relativistic context by using the Galilean covariant Pauli-Dirac equation. From a non-relativistic Lagrangian density, we find an appropriate Dirac-like Hamiltonian in the momentum representation, which includes the spin operator in the Galilean covariant framework. Within this formalism, we show that the total angular momentum appears as a constant of motion. Additionally, we propose a non-minimal coupling that describes the Galilean interaction between an electron and the electromagnetic field. Thereby, we obtain, in a natural way, the Hamiltonian including all the essential interaction terms for the electron in a general vector field.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We introduce a quasianalytic nonlinear Schrodinger equation with beyond mean-field corrections to describe the dynamics of a zero-temperature dilute superfluid Fermi gas in the crossover from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime, where k(F)parallel to a parallel to << 1 with a the s-wave scattering length and k(F) the Fermi momentum, through the unitarity limit k(F)a ->+/-infinity to the Bose-Einstein condensation (BEC) regime where k(F)a > 0. The energy of our model is parametrized using the known asymptotic behavior in the BCS, BEC, and the unitarity limits and is in excellent agreement with accurate Green's-function Monte Carlo calculations. The model generates good results for frequencies of collective breathing oscillations of a trapped Fermi superfluid.
Resumo:
We introduce a nonlinear Schrodinger equation to describe the dynamics of a superfluid Bose gas in the crossover from the weak-coupling regime, where an(1/3)<<1 with a the interatomic s-wave scattering length and n the bosonic density, to the unitarity limit, where a ->+infinity. We call this equation the unitarity Schrodinger equation (USE). The zero-temperature bulk equation of state of this USE is parametrized by the Lee-Yang-Huang low-density expansion and Jastrow calculations at unitarity. With the help of the USE we study the profiles of quantized vortices and vortex-core radius in a uniform Bose gas. We also consider quantized vortices in a Bose gas under cylindrically symmetric harmonic confinement and study their profile and chemical potential using the USE and compare the results with those obtained from the Gross-Pitaevskii-type equations valid in the weak-coupling limit. Finally, the USE is applied to calculate the breathing modes of the confined Bose gas as a function of the scattering length.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties for a problem concerning the acceleration of particles in a wave packet are studied. The model is described in terms of a two-dimensional nonlinear map obtained from a Hamiltonian which describes the motion of a relativistic standard map. The phase space is mixed in the sense that there are regular and chaotic regions coexisting. When dissipation is introduced, the property of area preservation is broken and attractors emerge. We have shown that a tiny increase of the dissipation causes a change in the phase space. A chaotic attractor as well as its basin of attraction are destroyed thereby leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with the stable manifold of a saddle fixed point. Once the chaotic attractor is destroyed, a chaotic transient described by a power law with exponent 1 is observed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, we rederive three-dimensional scattering integral equations satisfying constraints of relativistic unitarity and convariance, first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, we derive several three-dimensional three-particle scattering equations satisfying constraints of relativistic unitarity and convariance. We relate two of these three-particle equations by a transformation of variables as in the two-particle case. The three-particle equations we derive are very practical and suitable for performing relativistic scattering calculations. (C) 1994 Academic Press, Inc.
Resumo:
We study the Boussinesq equation from the point of view of a multiple-time reductive perturbation method. As a consequence of the elimination of the secular producing terms through the use of the Korteweg-de Vries hierarchy, we show that the solitary-wave of the Boussinesq equation is a solitary-wave satisfying simultaneously all equations of the Korteweg-de Vries hierarchy, each one in an appropriate slow time variable. © 1995 American Institute of Physics.