917 resultados para Reinforced concrete structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The artefact was published in the following :

Bennett, D., (October 2007), Architectural Insitu Concrete, RIBA Publishing, London, , ISBN 124-3671-245, pp 101-103

Bennett, D., (2008), Concrete Elegance Four, London, Concrete Centre and RIBA Publishing, pp cover, c, 4, 9-12 & back.

Stacey, Professor M., (2011) Concrete: a studio design guide, London, Concrete Centre and RIBA Publishing, pp74-75.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arching or compressive membrane action (CMA) in reinforced concrete slabs occurs as a result of the great difference between the tensile and compressive strength of concrete. Cracking of the concrete causes a migration of the neutral axis which is accompanied by in-plane expansion of the slab at its boundaries. If this natural tendency to expand is restrained, the development of arching action enhances the strength of the slab. The term arching action is normally used to describe the arching phenomenon in one-way spanning slabs and compressive membrane action is normally used to describe the arching phenomenon in two-
way spanning slabs. This encyclopedic article presents the background to the discovery of the phenomenon of arching action and presents a factual history of the approaches to the treatment of arching action in the United Kingdom and North American bridge deck design codes. The article summarises the theoretical methodology used in the United Kingdom Design Manual for Roads and Bridges, BD81/02, which was based on the work by Kirkpatrick, Rankin & Long at Queen's University Belfast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design, development and evaluation of an optical fibre pH sensor for monitoring pH in the alkaline region are discussed in detail in this paper. The design of this specific pH sensor is based on the pH induced change in fluorescence intensity of a coumarin imidazole dye which is covalently attached to a polymer network and then fixed to the distal end of an optical fibre. The sensor provides a response over a pH range of 10.0–13.2 with an acceptable response rate of around 50 min, having shown a very good stability over a period of longer than 20 months thus far. The sensor has also demonstrated little cross-sensitivity to ionic strength (IS) and also excellent photostability through a series of laboratory tests. These features make this type of sensor potentially well suited for in situ long term monitoring of pH in concrete structures, to enhance structural monitoring in the civil engineering sector

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel in concrete is one of most important durability and safety concern for reinforced concrete structures. To study chloride ingress into concrete is thus very important. However, most of the researchers focus on the studying chloride ingress through concrete samples without any loading. In reality concrete structures are subjected to different kinds of loads and therefore studying the effect of such loads on chloride transport is critical. In this work, 28 different concrete mixes were subjected to three levels of compressive load (0%, 50% and 75% of compressive failure load – f) for 24 hours. Further to unloading, these samples were subjected to non-steady state chloride diffusion test as per NT Build 443. The results were compared against the diffusion coefficient obtained for concrete samples that had no previous loading. D value for concretes subjected to 75% f showed a significant increase compared to 0% loading condition, but the increase was insignificant for 50% f. The results indicate that the influence of concrete mixes variables on D is more significant than that of loading level. Surface chloride concentration also increased with the loading level, which might be due to the increased concrete surface area caused by micro cracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonation and chloride ingress are the two main causes of corrosion in reinforced concrete structures. An investigation to monitor the ingress of chlorides and carbonation during a 9 month wetting and drying exposure regime to simulate conditions in which multiple mode transport mechanisms are active was conducted on a variety of binders. The penetration was evaluated using water and acid soluble chloride profiles, and phenolphthalein indicator. X-ray diffraction was also used to determine the presence of bound chlorides and carbonation. The results indicated that acid extraction of chlorides is quantitatively reliable and practical for assessing penetration. The effect of carbonation on binding capability was observed and the relative quantity of chlorides also showed a correlation with the amount of chlorides bound in the form of Friedel’s salt.