883 resultados para Regression Trees
Resumo:
Tropical tree species vary widely in their pattern of spatial dispersion. We focus on how seed predation may modify seed deposition patterns and affect the abundance and dispersion of adult trees in a tropical forest in India. Using plots across a range of seed densities, we examined whether seed predation levels by terrestrial rodents varied across six large-seeded, bird-dispersed tree species. Since inter-specific variation in density-dependent seed mortality may have downstream effects on recruitment and adult tree stages, we determined recruitment patterns close to and away from parent trees, along with adult tree abundance and dispersion patterns. Four species (Canarium resiniferum, Dysoxylum binectariferum, Horsfieldia kingii, and Prunus ceylanica) showed high predation levels (78.5-98.7%) and increased mortality with increasing seed density, while two species, Chisocheton cumingianus and Polyalthia simiarum, showed significantly lower seed predation levels and weak density-dependent mortality. The latter two species also had the highest recruitment near parent trees, with most abundant and aggregated adults. The four species that had high seed mortality had low recruitment under parent trees, were rare, and had more spaced adult tree dispersion. Biotic dispersal may be vital for species that suffer density-dependent mortality factors under parent trees. In tropical forests where large vertebrate seed dispersers but not seed predators are hunted, differences in seed vulnerability to rodent seed predation and density-dependent mortality can affect forest structure and composition.
Resumo:
The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.
Resumo:
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Resumo:
Let where be a set of points in d-dimensional space with a given metric rho. For a point let r (p) be the distance of p with respect to rho from its nearest neighbor in Let B(p,r (p) ) be the open ball with respect to rho centered at p and having the radius r (p) . We define the sphere-of-influence graph (SIG) of as the intersection graph of the family of sets Given a graph G, a set of points in d-dimensional space with the metric rho is called a d-dimensional SIG-representation of G, if G is isomorphic to the SIG of It is known that the absence of isolated vertices is a necessary and sufficient condition for a graph to have a SIG-representation under the L (a)-metric in some space of finite dimension. The SIG-dimension under the L (a)-metric of a graph G without isolated vertices is defined to be the minimum positive integer d such that G has a d-dimensional SIG-representation under the L (a)-metric. It is denoted by SIG (a)(G). We study the SIG-dimension of trees under the L (a)-metric and almost completely answer an open problem posed by Michael and Quint (Discrete Appl Math 127:447-460, 2003). Let T be a tree with at least two vertices. For each let leaf-degree(v) denote the number of neighbors of v that are leaves. We define the maximum leaf-degree as leaf-degree(x). Let leaf-degree{(v) = alpha}. If |S| = 1, we define beta(T) = alpha(T) - 1. Otherwise define beta(T) = alpha(T). We show that for a tree where beta = beta (T), provided beta is not of the form 2 (k) - 1, for some positive integer k a parts per thousand yen 1. If beta = 2 (k) - 1, then We show that both values are possible.
Resumo:
This paper proposes a novel approach to solve the ordinal regression problem using Gaussian processes. The proposed approach, probabilistic least squares ordinal regression (PLSOR), obtains the probability distribution over ordinal labels using a particular likelihood function. It performs model selection (hyperparameter optimization) using the leave-one-out cross-validation (LOO-CV) technique. PLSOR has conceptual simplicity and ease of implementation of least squares approach. Unlike the existing Gaussian process ordinal regression (GPOR) approaches, PLSOR does not use any approximation techniques for inference. We compare the proposed approach with the state-of-the-art GPOR approaches on some synthetic and benchmark data sets. Experimental results show the competitiveness of the proposed approach.
Resumo:
This paper proposes a sparse modeling approach to solve ordinal regression problems using Gaussian processes (GP). Designing a sparse GP model is important from training time and inference time viewpoints. We first propose a variant of the Gaussian process ordinal regression (GPOR) approach, leave-one-out GPOR (LOO-GPOR). It performs model selection using the leave-one-out cross-validation (LOO-CV) technique. We then provide an approach to design a sparse model for GPOR. The sparse GPOR model reduces computational time and storage requirements. Further, it provides faster inference. We compare the proposed approaches with the state-of-the-art GPOR approach on some benchmark data sets. Experimental results show that the proposed approaches are competitive.
Resumo:
Invasive species, local plant communities and invaded ecosystems change over space and time. Quantifying this change may lead to a better understanding of the ecology and the effective management of invasive species. We used data on density of the highly invasive shrub Lantana camara (lantana) for the period 1990-2008 from a 50 ha permanent plot in a seasonally dry tropical forest of Mudumalai in southern India. We used a cumulative link mixed-effects regression approach to model the transition of lantana from one qualitative density state to another as a function of biotic factors such as indicators of competition from local species (lantana itself, perennial grasses, invasive Chromolaena odorata, the native shrub Helicteres isora and basal area of native trees) and abiotic factors such as fire frequency, inter-annual variability of rainfall and relative soil moisture. The density of lantana increased substantially during the study period. Lantana density was negatively associated with the density of H. isora, positively associated with basal area of native trees, but not affected by the presence of grasses or other invasive species. In the absence of fire, lantana density increased with increasing rainfall. When fires occurred, transitions to higher densities occurred at low rainfall values. In drier regions, lantana changed from low to high density as rainfall increased while in wetter regions of the plot, lantana persisted in the dense category irrespective of rainfall. Lantana seems to effectively utilize resources distributed in space and time to its advantage, thus outcompeting local species and maintaining a population that is not yet self-limiting. High-risk areas and years could potentially be identified based on inferences from this study for facilitating management of lantana in tropical dry forests.
Resumo:
Multiple input multiple output (MIMO) systems with large number of antennas have been gaining wide attention as they enable very high throughputs. A major impediment is the complexity at the receiver needed to detect the transmitted data. To this end we propose a new receiver, called LRR (Linear Regression of MMSE Residual), which improves the MMSE receiver by learning a linear regression model for the error of the MMSE receiver. The LRR receiver uses pilot data to estimate the channel, and then uses locally generated training data (not transmitted over the channel), to find the linear regression parameters. The proposed receiver is suitable for applications where the channel remains constant for a long period (slow-fading channels) and performs quite well: at a bit error rate (BER) of 10(-3), the SNR gain over MMSE receiver is about 7 dB for a 16 x 16 system; for a 64 x 64 system the gain is about 8.5 dB. For large coherence time, the complexity order of the LRR receiver is the same as that of the MMSE receiver, and in simulations we find that it needs about 4 times as many floating point operations. We also show that further gain of about 4 dB is obtained by local search around the estimate given by the LRR receiver.
Resumo:
An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein's unbiased risk estimator (SURE) to estimate a weighted mean-square error (MSE) risk, and optimize it with respect to the order and bandwidth parameters. The two parameters are thus spatially adapted in such a manner that noise smoothing and fine structure preservation are simultaneously achieved. On the application side, we consider the problem of image restoration from uniform/non-uniform data, and show that the SURE approach to spatially adaptive kernel regression results in better quality estimation compared with its spatially non-adaptive counterparts. The denoising results obtained are comparable to those obtained using other state-of-the-art techniques, and in some scenarios, superior.
Resumo:
Elastic Net Regularizers have shown much promise in designing sparse classifiers for linear classification. In this work, we propose an alternating optimization approach to solve the dual problems of elastic net regularized linear classification Support Vector Machines (SVMs) and logistic regression (LR). One of the sub-problems turns out to be a simple projection. The other sub-problem can be solved using dual coordinate descent methods developed for non-sparse L2-regularized linear SVMs and LR, without altering their iteration complexity and convergence properties. Experiments on very large datasets indicate that the proposed dual coordinate descent - projection (DCD-P) methods are fast and achieve comparable generalization performance after the first pass through the data, with extremely sparse models.
Resumo:
Culturally protected forest patches or sacred groves have been the integral part of many traditional societies. This age old tradition is a classic instance of community driven nature conservation sheltering native biodiversity and supporting various ecosystem functions particularly hydrology. The current work in Central Western Ghats of Karnataka, India, highlights that even small sacred groves amidst humanised landscapes serve as tiny islands of biodiversity, especially of rare and endemic species. Temporal analysis of landuse dynamics reveals the changing pattern of the studied landscape. There is fast reduction of forest cover (15.14-11.02 %) in last 20 years to meet up the demand of agricultural land and plantation programs. A thorough survey and assessment of woody endemic species distribution in the 25 km(2) study area documented presence of 19 endemic species. The distribution of these species is highly skewed towards the culturally protected patches in comparison to other land use elements. It is found that, among the 19 woody endemic species, those with greater ecological amplitude are widely distributed in the studied landscape in groves as well as other land use forms whereas, natural population of the sensitive endemics are very much restricted in the sacred grove fragments. The recent degradation in the sacred grove system is perhaps, due to weakening of traditional belief systems and associated laxity in grove protection leading to biotic disturbances. Revitalisation of traditional practices related to conservation of sacred groves can go a long way in strengthening natural ecological systems of fragile humid tropical landscape.
Resumo:
Using a realistic nonlinear mathematical model for melanoma dynamics and the technique of optimal dynamic inversion (exact feedback linearization with static optimization), a multimodal automatic drug dosage strategy is proposed in this paper for complete regression of melanoma cancer in humans. The proposed strategy computes different drug dosages and gives a nonlinear state feedback solution for driving the number of cancer cells to zero. However, it is observed that when tumor is regressed to certain value, then there is no need of external drug dosages as immune system and other therapeutic states are able to regress tumor at a sufficiently fast rate which is more than exponential rate. As model has three different drug dosages, after applying dynamic inversion philosophy, drug dosages can be selected in optimized manner without crossing their toxicity limits. The combination of drug dosages is decided by appropriately selecting the control design parameter values based on physical constraints. The process is automated for all possible combinations of the chemotherapy and immunotherapy drug dosages with preferential emphasis of having maximum possible variety of drug inputs at any given point of time. Simulation study with a standard patient model shows that tumor cells are regressed from 2 x 107 to order of 105 cells because of external drug dosages in 36.93 days. After this no external drug dosages are required as immune system and other therapeutic states are able to regress tumor at greater than exponential rate and hence, tumor goes to zero (less than 0.01) in 48.77 days and healthy immune system of the patient is restored. Study with different chemotherapy drug resistance value is also carried out. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The present work presents the results of experimental investigation of semi-solid rheocasting of A356 Al alloy using a cooling slope. The experiments have been carried out following Taguchi method of parameter design (orthogonal array of L-9 experiments). Four key process variables (slope angle, pouring temperature, wall temperature, and length of travel of the melt) at three different levels have been considered for the present experimentation. Regression analysis and analysis of variance (ANOVA) has also been performed to develop a mathematical model for degree of sphericity evolution of primary alpha-Al phase and to find the significance and percentage contribution of each process variable towards the final outcome of degree of sphericity, respectively. The best processing condition has been identified for optimum degree of sphericity (0.83) as A(3), B-3, C-2, D-1 i.e., slope angle of 60 degrees, pouring temperature of 650 degrees C, wall temperature 60 degrees C, and 500 mm length of travel of the melt, based on mean response and signal to noise ratio (SNR). ANOVA results shows that the length of travel has maximum impact on degree of sphericity evolution. The predicted sphericity obtained from the developed regression model and the values obtained experimentally are found to be in good agreement with each other. The sphericity values obtained from confirmation experiment, performed at 95% confidence level, ensures that the optimum result is correct and also the confirmation experiment values are within permissible limits. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present a novel algorithm for piecewise linear regression which can learn continuous as well as discontinuous piecewise linear functions. The main idea is to repeatedly partition the data and learn a linear model in each partition. The proposed algorithm is similar in spirit to k-means clustering algorithm. We show that our algorithm can also be viewed as a special case of an EM algorithm for maximum likelihood estimation under a reasonable probability model. We empirically demonstrate the effectiveness of our approach by comparing its performance with that of the state of art algorithms on various datasets. (C) 2014 Elsevier Inc. All rights reserved.