911 resultados para Redox titration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing citrate concentration, at constant ionic strength (30 mM) decreases the rate of cytochrome ~ reduction by ascorbate. This effect is also seen at both high (600 mM) and low (19 mM) ionic strengths, and the Kapp for citrate increases with increasing ionic strength. Citrate binds d both ferri -and ferrocytochrome ~, but with a lower affinity for the latter form (Kox . .red d = 2 mM, Kd = 8 mM) as shown by an equilibrium assay with N,N,N',N', Tetramethyl E- phenylenediamine. The reaction of ferricytochrome ~with cyanide is also altered in the presence of citrate: citrate increases the K~PP for cyanide. Column chromatography of cytochrome ~-cytochrome oxidase mixtures shows citrate increases the dissociation constant of the complex. These results are confirmed in kinetic assays for the "loose"site (Km = 20 pM) only. The effect of increasing citrate observable at the "tight" site (Km = 0.25 pM) is on the turnover number and not on the K . These results suggest a mechanism m where anion binding to cytochrome £ at the tight site affects the equilibrium between two forms of cytochrome c bound cytochrome oxidase: an active and an inactive one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wine produced using an appassimento-type process represents a new and exciting innovation for the Ontario wine industry. This process involves drying grapes that have already been picked from the vine, which increases the sugar content due to dehydration and induces a variety of changes both within and on the surface of the grapes. Increasing sugar contents in musts subject wine yeast to conditions of high osmolarity during alcoholic fermentations. Under these conditions, yeast growth can be inhibited, target alcohol levels may not be attained and metabolic by-products of the hyperosmotic stress response, including glycerol and acetic acid, may impact wine composition. The further metabolism of acetic acid to acetylCoA by yeast facilitates the synthesis of ethyl acetate, a volatile compound that can also impact wine quality if present in sufficiently high concentrations. The first objective of this project was to understand the effect of yeast strain and sugar concentration on fermentation kinetics and metabolite formation, notably acetic acid and ethyl acetate, during fermentation in appassimento-type must. Our working hypotheses were that (1) the natural isolate Saccharomyces bayanus would produce less acetic acid and ethyl acetate compared to Saccharomyces cerevisiae strain EC-1118 fermenting the high and low sugar juices; (2) the wine produced using the appassimento process would contain higher levels of acetic acid and lower levels of ethyl acetate compared to table wine; (3) and the strains would be similar in the kinetic behavior of their fermentation performances in the high sugar must. This study determined that the S. bayanus strain produced significantly less acetic acid and ethyl acetate in the appassimento wine and table wine fermentations. Differences in acetic acid and ethyl acetate production were also observed within strains fermenting the two sugar conditions. Acetic acid production was higher in table wine fermented by S. bayanus as no acetic acid was produced in appassimento-style wine, and 1.4-times higher in appassimento wine fermented by EC-1118 over that found in table wine. Ethyl acetate production was 27.6-times higher in table wine fermented by S. bayanus, and 5.2-times higher by EC-1118, compared to that in appassimento wine. Sugar utilization and ethanol production were comparable between strains as no significant differences were determined. The second objective of this project was to bring a method in-house for measuring the concentration of pyridine nucleotides, NAD+, NADP+, NADH and NADPH, in yeast cytosolic extract. Development of this method is of applicative interest for our lab group as it will enable the redox balance of the NAD+/ NADH and NADP+/ NADPH systems to be assessed during high sugar fermentations to determine their respective roles as metabolic triggers for acetic acid production. Two methods were evaluated in this study including a UV-endpoint method using a set of enzymatic assay protocols outlined in Bergmeyer (1974) and a colorimetric enzyme cycling method developed by Sigma-Aldrich® using commercial kits. The former was determined to be limited by its low sensitivity following application to yeast extract and subsequent coenzyme analyses, while the latter was shown to exhibit greater sensitivity. The results obtained from the kits indicated high linearity, accuracy and precision of the analytical method for measuring NADH and NADPH, and that it was sensitive enough to measure the low coenzyme concentrations present in yeast extract samples. NADtotal and NADPtotal concentrations were determined to be above the lower limit of quantification and within the range of the respective calibration curves, making this method suitable for our research purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Ingeniería Cerámica Orientada a Vidrio) U.A.N.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Le supplément d’oxygène et la nutrition parentérale (NP) sont les deux sources majeures de stress oxydant chez le nouveau-né. Lors de la détoxification des oxydants, le potentiel redox du glutathion s’oxyde. Notre hypothèse est que le supplément d’oxygène et la durée de la NP sont associés à un potentiel redox plus oxydé et à une augmentation de la sévérité de la dysplasie bronchopulmonaire (DBP). Patients et Méthodes: Une étude observationnelle prospective incluant des enfants de moins de 29 semaines d’âge gestationnel. Les concentrations sanguines de GSH et GSSG à jour 6-7 et à 36 semaines d’âge corrigé étaient mesurées par électrophorèse capillaire et le potentiel redox était calculé selon l’équation de Nernst. La sévérité de la DBP correspondait à la définition du NICHD. Résultats: Une FiO2≥ 25% au 7ième jour de vie ainsi que plus de 14 jours de NP sont significativement associés à un potentiel redox plus oxydé et à une DBP plus sévère. Ces relations sont indépendantes de l’âge de gestation et de la gravité de la maladie initiale. La corrélation entre le potentiel redox et la sévérité de la DBP n’est pas significative. La durée de la NP était responsable de 15% de la variation du potentiel redox ainsi que de 42% de la variation de la sévérité de la DPB. Conclusion: Ces résultats suggèrent que l’oxygène et la NP induisent un stress oxydant et que les stratégies visant une utilisation plus judicieuse de l’oxygène et de la NP devraient diminuer la sévérité de la DBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1 ), tryptose phosphate broth (2.95 g l 1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 lgml 1 chloramphenicol, 100 lgml 1 streptomycin and 100 IU ml 1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-20-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) on solid surfaces are of great current interest in science and nanotechnology. This thesis describes the preparation of several symmetrically 1,1’-substituted ferrocene derivatives that contain anchoring groups suitable for chemisorption on gold and may give rise to SAMs with electrochemically switchable properties. The binding groups are isocyano (-NC), isothiocyanato (-NCS), phosphanyl (-PPh2), thioether (-SR) and thienyl. In the context of SAM fabrication, isothiocyanates and phosphanes are adsorbate systems which, surprisingly, have remained essentially unexplored. SAMs on gold have been fabricated with the adsorbates from solution and investigated primarily by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. The results of these analytical investigations are presented and discussed in matters of the film quality and possible binding modes. The quality of self-assembled monolayers fabricated from 1,1’-diisocyanoferrocene and 1,1’-diisothiocyanatoferrocene turned out to be superior to that of films based on the other adsorbate species investigated. Films of those absorbates as well as of dppf afforded well-defined SAMs of good quality. All other films of this study based on sulfur containing anchoring groups exhibit chemical inhomogeneity and low orientational order of the film constituents and therefore failed to give rise to well-defined SAMs. Surface coordination chemistry is naturally related to molecular coordination chemistry. Since all SAMs described in this thesis were prepared on gold (111) surfaces, the ferrocene-based ligands of this study have been investigated in their ability for complexation towards gold(I). The sulfur-based ferrocene ligands [fc(SR)2] failed to give stable gold(I) complexes. In contrast, 1,1’-diisocyanoferrocene (1) proved to be an excellent ligand for the complexation of gold(I). Several complexes were prepared and characterised utilising a series of gold(I) acetylides. These complexes show interesting structural motifs in the solid state, since intramolecular aurophilic interactions lead to a parallel orientation of the isocyano moieties, combined with an antiparallel alignment of neighbouring units. The reaction of 1 with the gold(I) acetylide [Au(C≡C–Fc)]n turned out to be very unusual, since the two chemically equivalent isocyano groups undergo a different reaction. One group shows an ordinary coordination and the other one undergoes an extraordinary 1,1-insertion into the Au-C bond. As a sideline of the research of this thesis several ferrocene derivatives have been tested for their suitability for potential surface reactions. Copper(I) mediated 1,3-dipolar cycloadditions of azidoferrocene derivatives with terminal alkynes appeared very promising in this context, but failed to a certain extent in terms of ‘click’ chemistry, since the formation of the triazoles depended on the strict exclusion of oxygen and moisture and yields were only moderate. Staudinger reactions between dppf and azidoferrocene derivatives were also tested. The nucleophilic additions of secondary amines to 1,1’-diisothiocyanatoferrocene led to the respective thiourea derivatives in quantitative yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard redox potentials E^0(M^z+x/M^z+) in acidic solutions for group 5 elements including element 105 (Ha) and the actinide, Pa, have been estimated on the basis of the ionization potentials calculated via the multiconfiguration Dirac-Fock method. Stability of the pentavalent state was shown to increase along the group from V to Ha, while that of the tetra- and trivalent states decreases in this direction. Our estimates have shown no extra stability of the trivalent state of hahnium. Element 105 should form mixed-valence complexes by analogy with Nb due to the similar values of their potentials E^0(M^3+/M^2+). The stability of the maximumoxidation state of the elements decreases in the direction 103 > 104 > 105.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wedand management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg(-1) and 1100 mg P kg(-1) in the surface 0-30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0-10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30-100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30-100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal titration microcalorimetry (ITC) has been applied to investigate protein−tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein−tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein−tannin interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal titration microcalorimetry (ITC) has been applied to investigate protein-tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein-tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein-tannin interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of rapid acidification and alkylation can be used to characterise the redox status of oxidoreductases, and to determine numbers of free cysteine residues within substrate proteins. We have previously used this method to analyse interacting components of the MHC class I pathway, namely ERp57 and tapasin. Here, we have applied rapid acidification alkylation as a novel approach to analysing the redox status of MHC class I molecules. This analysis of the redox status of the MHC class I molecules HLA-A2 and HLA-B27, which is strongly associated with a group of inflammatory arthritic disorders referred to as Spondyloarthropathies, revealed structural and conformational information. We propose that this assay provides a useful tool in the study of in vivo MHC class I structure. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes. However, for other pathogens which are not exposed to such environmental stress, activation of fusogenicity can result from precise thiol/disulfide rearrangements mediated by either an endogenous redox autocatalytic isomerase or a cell-associated oxidoreductase. Study of the activation of HIV envelope fusogenicity has revealed new knowledge about how redox changes within a viral envelope trigger fusion. We discuss these findings and their implication for anti-HIV therapy. In addition, to compare and contrast the situation outlined for HIV with an enveloped virus that can fuse with the cell plasma membrane independent of the redox status of its envelope protein, we review parallel data obtained on SARS coronavirus entry.