944 resultados para Recognition accuracy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.

Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.

Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.

Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we perform a first approach to emotion recognition from EEG single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology -- Single channel EEG signals are analyzed and processed using several window sizes by performing a statistical analysis over features in the time and frequency domains -- Finally, a neural network obtained an average accuracy rate of 99% of classification in two emotional states such as happiness and sadness

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Close similarities have been found between the otoliths of sea-caught and laboratory-reared larvae of the common sole Solea solea (L.), given appropriate temperatures and nourishment of the latter. But from hatching to mouth formation. and during metamorphosis, sole otoliths have proven difficult to read because the increments may be less regular and low contrast. In this study, the growth increments in otoliths of larvae reared at 12 degrees C were counted by light microscopy to test the hypothesis of daily deposition, with some results verified using scanning electron microscopy (SEM), and by image analysis in order to compare the reliability of the 2 methods in age estimation. Age was first estimated (in days posthatch) from light micrographs of whole mounted otoliths. Counts were initiated from the increment formed at the time of month opening (Day 4). The average incremental deposition rate was consistent with the daily hypothesis. However, the light-micrograph readings tended to underestimate the mean ages of the larvae. Errors were probably associated with the low-contrast increments: those deposited after the mouth formation during the transition to first feeding, and those deposited from the onset of eye migration (about 20 d posthatch) during metamorphosis. SEM failed to resolve these low-contrast areas accurately because of poor etching. A method using image analysis was applied to a subsample of micrograph-counted otoliths. The image analysis was supported by an algorithm of pattern recognition (Growth Demodulation Algorithm, GDA). On each otolith, the GDA method integrated the growth pattern of these larval otoliths to averaged data from different radial profiles, in order to demodulate the exponential trend of the signal before spectral analysis (Fast Fourier Transformation, FFT). This second method both allowed more precise designation of increments, particularly for low-contrast areas, and more accurate readings but increased error in mean age estimation. The variability is probably due to a still rough perception of otolith increments by the GDA method, counting being achieved through a theoretical exponential pattern and mean estimates being given by FFT. Although this error variability was greater than expected, the method provides for improvement in both speed and accuracy in otolith readings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a semi-parametric Algorithm for parsing football video structures. The approach works on a two interleaved based process that closely collaborate towards a common goal. The core part of the proposed method focus perform a fast automatic football video annotation by looking at the enhance entropy variance within a series of shot frames. The entropy is extracted on the Hue parameter from the HSV color system, not as a global feature but in spatial domain to identify regions within a shot that will characterize a certain activity within the shot period. The second part of the algorithm works towards the identification of dominant color regions that could represent players and playfield for further activity recognition. Experimental Results shows that the proposed football video segmentation algorithm performs with high accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we focus on pattern recognition methods related to EMG upper-limb prosthetic control. After giving a detailed review of the most widely used classification methods, we propose a new classification approach. It comes as a result of comparison in the Fourier analysis between able-bodied and trans-radial amputee subjects. We thus suggest a different classification method which considers each surface electrodes contribute separately, together with five time domain features, obtaining an average classification accuracy equals to 75% on a sample of trans-radial amputees. We propose an automatic feature selection procedure as a minimization problem in order to improve the method and its robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.