908 resultados para Reasoning under Uncertainty
Resumo:
Published as an article in: Journal of International Money and Finance, 2010, vol. 29, issue 6, pages 1171-1191.
Resumo:
Global warming of the oceans is expected to alter the environmental conditions that determine the growth of a fishery resource. Most climate change studies are based on models and scenarios that focus on economic growth, or they concentrate on simulating the potential losses or cost to fisheries due to climate change. However, analysis that addresses model optimization problems to better understand of the complex dynamics of climate change and marine ecosystems is still lacking. In this paper a simple algorithm to compute transitional dynamics in order to quantify the effect of climate change on the European sardine fishery is presented. The model results indicate that global warming will not necessarily lead to a monotonic decrease in the expected biomass levels. Our results show that if the resource is exploited optimally then in the short run, increases in the surface temperature of the fishery ground are compatible with higher expected biomass and economic profit.
Resumo:
The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.
Resumo:
An orchestration is a multi-threaded computation that invokes a number of remote services. In practice, the responsiveness of a web-service fluctuates with demand; during surges in activity service responsiveness may be degraded, perhaps even to the point of failure. An uncertainty profile formalizes a user's perception of the effects of stress on an orchestration of web-services; it describes a strategic situation, modelled by a zero-sum angel–daemon game. Stressed web-service scenarios are analysed, using game theory, in a realistic way, lying between over-optimism (services are entirely reliable) and over-pessimism (all services are broken). The ‘resilience’ of an uncertainty profile can be assessed using the valuation of its associated zero-sum game. In order to demonstrate the validity of the approach, we consider two measures of resilience and a number of different stress models. It is shown how (i) uncertainty profiles can be ordered by risk (as measured by game valuations) and (ii) the structural properties of risk partial orders can be analysed.
Resumo:
A growing literature considers the impact of uncertainty using SVAR models that include proxies for uncertainty shocks as endogenous variables. In this paper we consider the impact of measurement error in these proxies on the estimated impulse responses. We show via a Monte-Carlo experiment that measurement error can result in attenuation bias in impulse responses. In contrast, the proxy SVAR that uses the uncertainty shock proxy as an instrument does not su¤er from this bias. Applying this latter method to the Bloom (2009) data-set results in impulse responses to uncertainty shocks that are larger in magnitude and more persistent than those obtained from a recursive SVAR.
Resumo:
In this article we study the effect of uncertainty on an entrepreneur who must choose the capacity of his business before knowing the demand for his product. The unit profit of operation is known with certainty but there is no flexibility in our one-period framework. We show how the introduction of global uncertainty reduces the investment of the risk neutral entrepreneur and, even more, that the risk averse one. We also show how marginal increases in risk reduce the optimal capacity of both the risk neutral and the risk averse entrepreneur, without any restriction on the concave utility function and with limited restrictions on the definition of a mean preserving spread. These general results are explained by the fact that the newsboy has a piecewise-linear, and concave, monetary payoff witha kink endogenously determined at the level of optimal capacity. Our results are compared with those in the two literatures on price uncertainty and demand uncertainty, and particularly, with the recent contributions of Eeckhoudt, Gollier and Schlesinger (1991, 1995).
Resumo:
In this article we study the effect of uncertainty on an entrepreneur who must choose the capacity of his business before knowing the demand for his product. The unit profit of operation is known with certainty but there is no flexibility in our one-period framework. We show how the introduction of global uncertainty reduces the investment of the risk neutral entrepreneur and, even more, that the risk averse one. We also show how marginal increases in risk reduce the optimal capacity of both the risk neutral and the risk averse entrepreneur, without any restriction on the concave utility function and with limited restrictions on the definition of a mean preserving spread. These general results are explained by the fact that the newsboy has a piecewise-linear, and concave, monetary payoff witha kink endogenously determined at the level of optimal capacity. Our results are compared with those in the two literatures on price uncertainty and demand uncertainty, and particularly, with the recent contributions of Eeckhoudt, Gollier and Schlesinger (1991, 1995).
Resumo:
Uncertainties as to future supply costs of nonrenewable natural resources, such as oil and gas, raise the issue of the choice of supply sources. In a perfectly deterministic world, an efficient use of multiple sources of supply requires that any given market exhausts the supply it can draw from a low cost source before moving on to a higher cost one; supply sources should be exploited in strict sequence of increasing marginal cost, with a high cost source being left untouched as long as a less costly source is available. We find that this may not be the efficient thing to do in a stochastic world. We show that there exist conditions under which it can be efficient to use a risky supply source in order to conserve a cheaper non risky source. The benefit of doing this comes from the fact that it leaves open the possibility of using it instead of the risky source in the event the latter’s future cost conditions suddenly deteriorate. There are also conditions under which it will be efficient to use a more costly non risky source while a less costly risky source is still available. The reason is that this conserves the less costly risky source in order to use it in the event of a possible future drop in its cost.
Resumo:
At any given point in time, the collection of assets existing in the economy is observable. Each asset is a function of a set of contingencies. The union taken over all assets of these contingencies is what we call the set of publicly known states. An innovation is a set of states that are not publicly known along with an asset (in a broad sense) that pays contingent on those states. The creator of an innovation is an entrepreneur. He is represented by a probability measure on the set of new states. All other agents perceive the innovation as ambiguous: each of them is represented by a set of probabilities on the new states. The agents in the economy are classified with respect to their attitude towards this Ambiguity: the financiers are (locally) Ambiguity-seeking while the consumers are Ambiguity-averse. An entrepreneur and a financier come together when the former seeks funds to implement his project and the latter seeks new profit opportunities. The resulting contracting problem does not fall within the standard theory due to the presence of Ambiguity (on the financier’s side) and to the heterogeneity in the parties’ beliefs. We prove existence and monotonicity (i.e., truthful revelation) of an optimal contract. We characterize such a contract under the additional assumption that the financiers are globally Ambiguity-seeking. Finally, we re-formulate our results in an insurance framework and extend the classical result of Arrow [4] and the more recent one of Ghossoub. In the case of an Ambiguity-averse insurer, we also show that an optimal contract has the form of a generalized deductible.