937 resultados para Reactive Astrocytes
Resumo:
The aims of this study were to investigate the usefulness of serum C-reactive protein, procalcitonin, tumor necrosis factor alpha, interleukin-6, and interleukin-8 as postmortem markers of sepsis and to compare C-reactive protein and procalcitonin values in serum, vitreous humor, and cerebrospinal fluid in a series of sepsis cases and control subjects, in order to determine whether these measurements may be employed for the postmortem diagnosis of sepsis. Two study groups were formed, a sepsis group (eight subjects coming from the intensive care unit of two university hospitals, with a clinical diagnosis of sepsis in vivo) and control group (ten autopsy cases admitted to two university medicolegal centers, deceased from natural and unnatural causes, without elements to presume an underlying sepsis as the cause of death). Serum C-reactive protein and procalcitonin concentrations were significantly different between sepsis cases and control cases, whereas serum tumor necrosis factor alpha, interleukin-6, and interleukin-8 values were not significantly different between the two groups, suggesting that measurement of interleukin-6, interleukin-8, and tumor necrosis factor alpha is non-optimal for postmortem discrimination of cases with sepsis. In the sepsis group, vitreous procalcitonin was detectable in seven out of eight cases. In the control group, vitreous procalcitonin was clearly detectable only in one case, which also showed an increase of all markers in serum and for which the cause of death was myocardial infarction associated with multi-organic failure. According to the results of this study, the determination of vitreous procalcitonin may be an alternative to the serum procalcitonin for the postmortem diagnosis of sepsis.
Resumo:
STUDY OBJECTIVES: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN: 6-hour instrumental sleep deprivation (TSD). SETTING: Animal sleep research laboratory. PARTICIPANTS: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS: Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS: This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.
Resumo:
Aquaglyceroporin-9 (AQP9) facilitates diffusion of water and energy substrates such as glycerol and monocarboxylates. AQP9 is present in plasma membrane and mitochondria of astrocytes and catecholaminergic neurons, suggesting that it plays a role in the energetic status of these cells. Using specific small interference RNA directed against AQP9 in astrocyte cultures, we showed that glycerol uptake is decreased which is associated with an increase in glucose uptake and oxidative metabolism. Our results not only confirm the presence of AQP9 in astrocytes but also suggest that changes in AQP9 expression alter glial energy metabolism.
Resumo:
The SSX-2 gene encodes a tumor-specific antigen expressed in neoplasms of various histological types. By analyzing a tumor-infiltrated lymph node of a melanoma patient bearing an SSX-2-expressing tumor, we have recently identified the first SSX-2-derived CD8(+) T-cell epitope, that corresponds to peptide SSX-2(41-49), and is recognized by specific CTL in an HLA-A2 restricted fashion. Here, we have used fluorescent HLA-A2/SSX-2(41-49) peptide multimeric complexes to analyze the response to SSX-2(41-49) in melanoma patients and healthy donors. Multimer(+) CD8(+) T cells were readily detected in the majority of patients bearing SSX-2-expressing tumors and, at lower proportions, in patients with nonexpressing tumors and healthy donors. Importantly, isolated A2/SSX-2(41-49) multimer(+) CD8(+) T cells exhibited a large functional heterogeneity in terms of antigen recognition and tumor reactivity. SSX-2-specific CTLs isolated from tumor-infiltrated lymph node of antigen-expressing patients as well as from the corresponding peripheral blood mononuclear cells exhibited high functional avidity of antigen recognition and efficiently recognized antigen-expressing tumors. In contrast, SSX-2-specific CTLs isolated from patients with undetectable responses in the tumor-infiltrated lymph node, as well as from healthy donors, recognized the antigen with decreased functional avidity and were not tumor reactive. Together, these data indicate that CD8(+) T-cell responses to SSX-2(41-49) frequently occur in SSX-2-expressing melanoma patients and suggest that SSX-2(41-49)-specific CTLs of high avidity and tumor reactivity are selectively expanded during immune responses to SSX-2-expressing tumors in vivo.
Resumo:
CONTEXT: Plasma levels of C-reactive protein (CRP) are independently associated with risk of coronary heart disease, but whether CRP is causally associated with coronary heart disease or merely a marker of underlying atherosclerosis is uncertain. OBJECTIVE: To investigate association of genetic loci with CRP levels and risk of coronary heart disease. DESIGN, SETTING, AND PARTICIPANTS: We first carried out a genome-wide association (n = 17,967) and replication study (n = 13,615) to identify genetic loci associated with plasma CRP concentrations. Data collection took place between 1989 and 2008 and genotyping between 2003 and 2008. We carried out a mendelian randomization study of the most closely associated single-nucleotide polymorphism (SNP) in the CRP locus and published data on other CRP variants involving a total of 28,112 cases and 100,823 controls, to investigate the association of CRP variants with coronary heart disease. We compared our finding with that predicted from meta-analysis of observational studies of CRP levels and risk of coronary heart disease. For the other loci associated with CRP levels, we selected the most closely associated SNP for testing against coronary heart disease among 14,365 cases and 32,069 controls. MAIN OUTCOME MEASURE: Risk of coronary heart disease. RESULTS: Polymorphisms in 5 genetic loci were strongly associated with CRP levels (% difference per minor allele): SNP rs6700896 in LEPR (-14.8%; 95% confidence interval [CI], -17.6% to -12.0%; P = 6.2 x 10(-22)), rs4537545 in IL6R (-11.5%; 95% CI, -14.4% to -8.5%; P = 1.3 x 10(-12)), rs7553007 in the CRP locus (-20.7%; 95% CI, -23.4% to -17.9%; P = 1.3 x 10(-38)), rs1183910 in HNF1A (-13.8%; 95% CI, -16.6% to -10.9%; P = 1.9 x 10(-18)), and rs4420638 in APOE-CI-CII (-21.8%; 95% CI, -25.3% to -18.1%; P = 8.1 x 10(-26)). Association of SNP rs7553007 in the CRP locus with coronary heart disease gave an odds ratio (OR) of 0.98 (95% CI, 0.94 to 1.01) per 20% lower CRP level. Our mendelian randomization study of variants in the CRP locus showed no association with coronary heart disease: OR, 1.00; 95% CI, 0.97 to 1.02; per 20% lower CRP level, compared with OR, 0.94; 95% CI, 0.94 to 0.95; predicted from meta-analysis of the observational studies of CRP levels and coronary heart disease (z score, -3.45; P < .001). SNPs rs6700896 in LEPR (OR, 1.06; 95% CI, 1.02 to 1.09; per minor allele), rs4537545 in IL6R (OR, 0.94; 95% CI, 0.91 to 0.97), and rs4420638 in the APOE-CI-CII cluster (OR, 1.16; 95% CI, 1.12 to 1.21) were all associated with risk of coronary heart disease. CONCLUSION: The lack of concordance between the effect on coronary heart disease risk of CRP genotypes and CRP levels argues against a causal association of CRP with coronary heart disease.
Resumo:
The Melan-A/MART-1 gene, which is expressed by normal melanocytes as well as by most fresh melanoma samples and melanoma cell lines, codes for Ags recognized by tumor-reactive CTL. HLA-A*0201-restricted Melan-A-specific CTL recognize primarily the Melan-A(27-35) (AAGIGILTV) and the Melan-A(26-35) (EAAGIGILTV) peptides. The sequences of these two peptides are not necessarily optimal as far as binding to HLA-A*0201 is concerned, since both lack one of the dominant anchor amino acid residues (leucine or methionine) at position 2. In this study we introduced single amino acid substitutions in either one of the two natural peptide sequences with the aim of improving peptide binding to HLA-A*0201 and/or recognition by specific CTL. Surprisingly, analogues of the Melan-A(27-35) peptide, which bound more efficiently than the natural nonapeptide to HLA-A*0201, were poorly recognized by tumor-reactive CTL. In contrast, among the Melan-A(26-35) peptide analogues tested, the peptide ELAGIGILTV was not only able to display stable binding to HLA-A2.1 but was also recognized more efficiently than the natural peptide by two short-term cultured tumor-infiltrated lymph node cell cultures as well as by five of five tumor-reactive CTL clones. Moreover, in vitro generation of tumor-reactive CTL by stimulation of PBMC from HLA-A*0201 melanoma patients with this particular peptide analogue was much more efficient than that observed with either one of the two natural peptides. These results suggest that the Melan-A(26-35) peptide analogue ELAGIGILTV may be more immunogenic than the natural peptides in HLA-A*0201 melanoma patients and should thus be considered as a candidate for future peptide-based vaccine trials.
Resumo:
The morphological and functional diversity of astrocytes, and their essential contribution in physiological and pathological conditions, are starting to emerge. However, experimental systems to investigate neuron-glia interactions and develop innovative approaches for the treatment of central nervous system (CNS) disorders are still very limited. Fluorescent reporter genes have been used to visualize populations of astrocytes and produce an atlas of gene expression in the brain. Knock-down or knock-out of astrocytic proteins using transgenesis have also been developed, but these techniques remain complex and time-consuming. Viral vectors have been developed to overexpress or silence genes of interest as they can be used for both in vitro and in vivo studies in adult mammalian species. In most cases, high transduction efficiency and long-term transgene expression are observed in neurons but there is limited expression in astrocytes. Several strategies have been developed to shift the tropism of lentiviral vectors (LV) and allow local and controlled gene expression in glial cells. In this review, we describe how modifications of the interaction between the LV envelope glycoprotein and the surface receptor molecules on target cells, or the integration of cell-specific promoters and miRNA post-transcriptional regulatory elements have been used to selectively express transgenes in astrocytes.
Resumo:
PURPOSE: As compared with natural tumor peptide sequences, carefully selected analog peptides may be more immunogenic and thus better suited for vaccination. However, T cells in vivo activated by such altered analog peptides may not necessarily be tumor specific because sequence and structure of peptide analogs differ from corresponding natural peptides. EXPERIMENTAL DESIGN: Three melanoma patients were immunized with a Melan-A peptide analog that binds more strongly to HLA-A*0201 and is more immunogenic than the natural sequence. This peptide was injected together with a saponin-based adjuvant, followed by surgical removal of lymph node(s) draining the site of vaccination. RESULTS: Ex vivo analysis of vaccine site draining lymph nodes revealed antigen-specific CD8+ T cells, which had differentiated to memory cells. In vitro, these cells showed accelerated proliferation upon peptide stimulation. Nearly all (16 of 17) of Melan-A-specific CD8+ T-cell clones generated from these lymph nodes efficiently killed melanoma cells. CONCLUSIONS: Patient immunization with the analog peptide leads to in vivo activation of T cells that were specific for the natural tumor antigen, demonstrating the usefulness of the analog peptide for melanoma immunotherapy.
Resumo:
The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity-dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.
Resumo:
Astrocytes are responsible for regulating extracellular levels of glutamate and potassium during neuronal activity. Glutamate clearance is handled by glutamate transporter subtypes glutamate transporter 1 and glutamate-aspartate transporter in astrocytes. DL-threo-beta-benzyloxyaspartate (TBOA) and dihydrokainate (DHK) are extensively used as inhibitors of glial glutamate transport activity. Using whole-cell recordings, we characterized the effects of both transporter inhibitors on afferent-evoked astrocyte currents in acute cortical slices of 3-week-old rats. When neuronal afferents were stimulated, passive astrocytes responded by a rapid inward current followed by a persistent tail current. The first current corresponded to a glutamate transporter current. This current was inhibited by both inhibitors and by tetrodotoxin. The tail current is an inward potassium current as it was blocked by barium. Besides inhibiting transporter currents, TBOA strongly enhanced the tail current. This effect was barium-sensitive and might be due to a rise in extracellular potassium level and increased glial potassium uptake. Unlike TBOA, DHK did not enhance the tail current but rather inhibited it. This result suggests that, in addition to inhibiting glutamate transport, DHK prevents astrocyte potassium uptake, possibly by blockade of inward-rectifier channels. This study revealed that, in brain slices, glutamate transporter inhibitors exert complex effects that cannot be attributed solely to glutamate transport inhibition.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.
Resumo:
Neuron-astrocyte reciprocal communication at synapses has emerged as a novel signalling pathway in brain function. Astrocytes sense the level of synaptic activity and, in turn, influence its efficacy through the regulated release of 'gliotransmitters' such as glutamate, ATP or D-serine. A calcium-dependent exocytosis is proposed to drive the release of gliotransmitters but its existence is still debated. Over the last years, we have been studying the molecular determinants governing D-serine release from glia using different approaches. Using a novel bioassay for D-serine, we have been able to show that D-serine release occurs mainly through a calcium- and SNARE proteindependent mechanism just supporting the idea that this amino acid is released by exocytosis from glia. We next have pursued our exploration by confocal imaging and tracking of the exocytotic routes for Dserine- mediated gliotransmission and have shown that D-serine releasable pools are confined to synaptobrevin2/cellubrevin-bearing vesicles. To shed light onto the mechanisms controlling the storage and the release of gliotransmitters and namely D-serine, we have developed a new method for the immunoisolation of synaptobrevin 2- positive vesicles from rat cortical astrocytes in culture while preserving their content in gliotransmitters. The purified organelles are clear round shape vesicles of excellent purity with homogeneous size (40 nm) as judged by electron microscopy. Immunoblotting analysis revealed that isolated vesicles contain most of the major proteins already described for neuron-derived vesicles like synaptic vesicle protein 2 (SV2) and the proton pump H?-ATPase. In addition, we have analyzed the content for various amino acids of these vesicles by means of chiral capillary electrophoresis coupled to laser-induced fluorescence detection. The purified vesicles contain large amount of D-serine. We also detect peaks corresponding to unidentified compounds that may correspond to others amino acids. Postembedding immunogold labelling of the rat neocortex further revealed the expression of D-serine in astrocytes processes contacting excitatory synapses. Finally, we have examined the uptake properties for Dserine and glutamate inside the isolated glial vesicles. Our results provide significant support for the existence of an uptake system for D-serine in secretory glial vesicles and for the storage of chemical substances like D-serine and glutamate. 11th International Congress on Amino Acids, Peptides and Proteins 763 123
Resumo:
Astrocytes are the brain nonnerve cells that are competent for gliosecretion, i.e., for expression and regulated exocytosis of clear and dense-core vesicles (DCVs). We investigated whether expression of astrocyte DCVs is governed by RE-1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF), the transcription repressor that orchestrates nerve cell differentiation. Rat astrocyte cultures exhibited high levels of REST and expressed neither DCVs nor their markers (granins, peptides, and membrane proteins). Transfection of a dominant-negative construct of REST induced the appearance of DCVs filled with secretogranin 2 and neuropeptide Y (NPY) and distinct from other organelles. Total internal reflection fluorescence analysis revealed NPY-monomeric red fluorescent protein-labeled DCVs to undergo Ca(2+)-dependent exocytosis, which was largely prevented by botulinum toxin B. In the I-II layers of the human temporal brain cortex, all neurons and microglia exhibited the expected inappreciable and high levels of REST, respectively. In contrast, astrocyte REST was variable, going from inappreciable to high, and accompanied by a variable expression of DCVs. In conclusion, astrocyte DCV expression and gliosecretion are governed by REST. The variable in situ REST levels may contribute to the well-known structural/functional heterogeneity of astrocytes.