920 resultados para Ras association domain family protein 1A
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pesquisas sobre saúde geral têm relacionado coesão familiar a fatores socioeconômicos e comportamentais. O objetivo deste estudo foi investigar a associação entre coesão familiar e fatores socioeconômicos, comportamentais e de saúde bucal. Este foi um estudo transversal com amostra por conglomerados em dois estágios. A amostra randomizada de 524 adolescentes era proveniente de escolas públicas da cidade de Piracicaba-SP. As variáveis foram avaliadas por questionários autoaplicáveis e os dados de saúde bucal, pelos índices CPO e CPI. A coesão familiar percebida pelo adolescente foi avaliada por meio da escala de adaptabilidade e coesão familiar. Análise univariada e regressão logística multinominal mostraram que adolescentes com baixa coesão familiar apresentaram mais chance de terem baixa renda (OR 2,28 IC95% 1,14-4,55), presença de cárie (OR 2,23 IC95% 1,21-4,09) e baixa frequência de escovação diária (OR 1,91 IC95% 1,03-3,54). Adolescentes com alta coesão familiar apresentaram mais chance que adolescentes com média coesão de terem alta renda e fator de proteção contra o hábito de tabagismo. Desta forma, a coesão familiar percebida pelo adolescente associou-se com variáveis comportamentais, socioeconômicas e de saúde bucal, indicando a importância de uma abordagem integral da saúde do paciente.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Red cell haemoglobin is the fundamental oxygen-transporting molecule in blood, but also a potentially tissue-damaging compound owing to its highly reactive haem groups. During intravascular haemolysis, such as in malaria and haemoglobinopathies(1), haemoglobin is released into the plasma, where it is captured by the protective acute-phase protein haptoglobin. This leads to formation of the haptoglobin-haemoglobin complex, which represents a virtually irreversible non-covalent protein-protein interaction(2). Here we present the crystal structure of the dimeric porcine haptoglobin-haemoglobin complex determined at 2.9 angstrom resolution. This structure reveals that haptoglobin molecules dimerize through an unexpected beta-strand swap between two complement control protein (CCP) domains, defining a new fusion CCP domain structure. The haptoglobin serine protease domain forms extensive interactions with both the alpha- and beta-subunits of haemoglobin, explaining the tight binding between haptoglobin and haemoglobin. The haemoglobin-interacting region in the alpha beta dimer is highly overlapping with the interface between the two alpha beta dimers that constitute the native haemoglobin tetramer. Several haemoglobin residues prone to oxidative modification after exposure to haem-induced reactive oxygen species are buried in the haptoglobin-haemoglobin interface, thus showing a direct protective role of haptoglobin. The haptoglobin loop previously shown to be essential for binding of haptoglobin-haemoglobin to the macrophage scavenger receptor CD163 (ref. 3) protrudes from the surface of the distal end of the complex, adjacent to the associated haemoglobin alpha-subunit. Small-angle X-ray scattering measurements of human haptoglobin-haemoglobin bound to the ligand-binding fragment of CD163 confirm receptor binding in this area, and show that the rigid dimeric complex can bind two receptors. Such receptor cross-linkage may facilitate scavenging and explain the increased functional affinity of multimeric haptoglobin-haemoglobin for CD163 (ref. 4).
Resumo:
INTRODUCTION: There is substantial evidence regarding the impact of negative life events during childhood on the aetiology of psychiatric disorders. We examined the association between negative early life events and social anxiety in a sample of 571 Spanish University students. METHODS: In a cross-sectional survey conducted in 2007, we collected data through a semistructured questionnaire of sociodemographic variables, personal and family psychiatric history, and substance abuse. We assessed the five early negative life events: (i) the loss of someone close, (ii) emotional abuse, (iii) physical abuse, (iv) family violence, and (v) sexual abuse. All participants completed the Liebowitz Social Anxiety Scale. RESULTS: Mean (SD) age was 21 (4.5), 75% female, LSAS score was 40 (DP = 22), 14.2% had a psychiatric family history and 50.6% had negative life events during childhood. Linear regression analyses, after controlling for age, gender, and family psychiatric history, showed a positive association between family violence and social score (p = 0.03). None of the remaining stressors produced a significant increase in LSAS score (p > 0.05). CONCLUSION: University students with high levels of social anxiety presented higher prevalence of negative early life events. Thus, childhood family violence could be a risk factor for social anxiety in such a population.
Resumo:
Chromatin is a highly dynamic, regulatory component in the process of transcription, repair, recombination and replication. The BRG1 and SNF2H proteins are ATP-dependent chromatin remodeling proteins that modulate chromatin structure to regulate DNA accessibility for DNA-binding proteins involved in these processes. The BRG1 protein is a central ATPase of the SWI/SNF complexes involved in chromatin remodeling associated with regulation of transcription. SWI/SNF complexes are biochemically hetero-geneous but little is known about the unique functional characteristics of the various forms. We have shown that SWI/SNF activity in SW13 cells affects actin filament organization dependent on the RhoA signaling pathway. We have further shown that the biochemical composition of SWI/SNF complexes qualitatively affects the remodeling activity and that the composition of biochemically purified SWI/SNF complexes does not reflect the patterns of chromatin binding of individual subunits. Chromatin binding assays (ChIP) reveal variations among subunits believed to be constitutive, suggesting that the plasticity in SWI/SNF complex composition is greater than suspected. We have also discovered an interaction between BRG1 and the splicing factor Prp8, linking SWI/SNF activity to mRNA processing. We propose a model whereby parts of the biochemical heterogeneity is a result of function and that the local chromatin environment to which the complex is recruited affect SWI/SNF composition. We have also isolated the novel B-WICH complex that contains WSTF, SNF2H, the splicing factor SAP155, the RNA helicase II/Guα, the transcription factor Myb-binding protein 1a, the transcription factor/DNA repair protein CSB and the RNA processing factor DEK. The formation of this complex is dependent on active transcription and links chromatin remodeling by SNF2H to RNA processing. By linking chromatin remodeling complexes with RNA processing proteins our work has begun to build a bridge between chromatin and RNA, suggesting that factors in chromatin associated assemblies translocate onto the growing nascent RNA.
Resumo:
The aim of the present study was to examine the association between milk protein polymorphism and fatty acids profiles of bovine milk. Milk samples were collected from each of 55 Reggiana cows during early, mid and late lactation, respectively, in two farms within the production area of Parmigiano Reggiano cheese. Identification and quantification of fatty acids were performed by gas chromatography. Milk fatty acid composition using cows of differing κ-casein (κ-Cn) and β-lactoglobulin (β-Lg) phenotypes was investigated. Statistically significant results regarding the associations between milk fatty acid composition and κ-Cn phenotype were found, in particular, κ-Cn BB seems to influence de novo fatty acid synthesis in the mammary gland. Also κ-Cn AB seems to have the same effect. Proportions of C10:0 (2,29a AA; 2,53b AB; 2,59b BB), C12:0 (2,77a AA; 3,17b AB; 3,20b BB) and C14:0 (9,22a AA; 10,25b AB; 10,27b BB) were higher in the milk from cows with κ-Cn phenotype AB and BB vs κ-Cn phenotype AA (p<0,05). Conversely C18:0 (7,84b AA; 7,20a,b AB; 6,94a BB) and C18:1 (19,19b AA; 16,81a AB; 16,79a BB) were lower in the milk from cows with κ-Cn phenotype AB and BB vs κ-Cn phenotype AA. The association between milk fatty acid composition and β-Lg phenotype was not statistically significant, except for some fatty acids. In particular, C12:0 (3,05a AA; 3,04a AB; 3,33b BB) was higher in the milk from cows with β-Lg phenotype BB vs β-Lg phenotype AA and AB (p<0,05). Concentrations of C18:0 (6,93a AA; 7,86b AB; 6,59a BB) and C18:1 (16,74a,b AA; 18,24b AB; 16,07a BB) were lower in the milk from cows with β-Lg phenotype AA and BB vs β-Lg phenotype AB (p<0,05). Moreover this research, carried out in farms within the Parmigiano Reggiano cheese district, analysed also the size distribution of fat globules in bulk milk of Reggiana and Frisona breed cows. In particular, the size distribution of individual milk fat globules of Reggiana cows with differing κ-Cn phenotypes was considered. From first observations, no statistically significant differences were observed.
Resumo:
Monoclonal antibodies have emerged as one of the most promising therapeutics in oncology over the last decades. The generation of fully human tumorantigen-specific antibodies suitable for anti-tumor therapy is laborious and difficult to achieve. Autoreactive B cells expressing those antibodies are detectable in cancer patients and represent a suitable source for human antibodies. However, the isolation and cultivation of this cell type is challenging. A novel method was established to identify antigen-specific B cells. The method is based on the conversion of the antigen independent CD40 signal into an antigen-specific one. For that, the artificial fusion proteins ABCos1 and ABCos2 (Antigen-specific B cell co-stimulator) were generated, which consist of an extracellular association-domain derived from the constant region of the human immunoglobulin (Ig) G1, a transmembrane fragment and an intracellular signal transducer domain derived of the cytoplasmic domain of the human CD40 receptor. By the association with endogenous Ig molecules the heterodimeric complex allows the antigen-specific stimulation of both the BCR and CD40. In this work the ability of the ABCos constructs to associate with endogenous IgG molecules was shown. Moreover, crosslinking of ABCos stimulates the activation of NF-κB in HEK293-lucNifty and induces proliferation in B cells. The stimulation of ABCos in transfected B cells results in an activation pattern different from that induced by the conventional CD40 signal. ABCos activated B cells show a mainly IgG isotype specific activation of memory B cells and are characterized by high proliferation and the differentiation into plasma cells. To validate the approach a model system was conducted: B cells were transfected with IVT-RNA encoding for anti-Plac1 B cell receptor (antigen-specific BCR), ABCos or both. The stimulation with the BCR specific Plac1 peptide induces proliferation only in the cotransfected B cell population. Moreover, we tested the method in human IgG+ memory B cells from CMV infected blood donors, in which the stimulation of ABCos transfected B cells with a CMV peptide induces antigen-specific expansion. These findings show that challenging ABCos transfected B cells with a specific antigen results in the activation and expansion of antigen-specific B cells and not only allows the identification but also cultivation of these B cells. The described method will help to identify antigen-specific B cells and can be used to characterize (tumor) autoantigen-specific B cells and allows the generation of fully human antibodies that can be used as diagnostic tool as well as in cancer therapy.
Resumo:
Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.
Resumo:
The armadillo family protein plakoglobin (Pg) is a well-characterized component of anchoring junctions, where it functions to mediate cell-cell adhesion and maintain epithelial tissue integrity. Although its closest homolog beta-catenin acts in the Wnt signaling pathway to dictate cell fate and promote proliferation and survival, the role of Pg in these processes is not well understood. Here, we investigate how Pg affects the survival of mouse keratinocytes by challenging both Pg-null cells and their heterozygote counterparts with apoptotic stimuli. Our results indicate that Pg deletion protects keratinocytes from apoptosis, with null cells exhibiting delayed mitochondrial cytochrome c release and activation of caspase-3. Pg-null keratinocytes also exhibit increased messenger RNA and protein levels of the anti-apoptotic molecule Bcl-X(L) compared to heterozygote controls. Importantly, reintroduction of Pg into the null cells shifts their phenotype towards that of the Pg+/- keratinocytes, providing further evidence that Pg plays a direct role in regulating cell survival. Taken together, our results suggest that in addition to its adhesive role in epithelia, Pg may also function in contrast to the pro-survival tendencies of beta-catenin, to potentiate death in cells damaged by apoptotic stimuli, perhaps limiting the potential for the propagation of mutations and cellular transformation.Journal of Investigative Dermatology advance online publication, 16 November 2006; doi:10.1038/sj.jid.5700615.
Resumo:
OBJECTIVE: To determine whether pharmacogenetic tests such as N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) genotyping are useful in identifying patients prone to antituberculosis drug-induced hepatotoxicity in a cosmopolite population. METHODS: In a prospective study we genotyped 89 patients treated with isoniazid (INH) for latent tuberculosis. INH-induced hepatitis (INH-H) or elevated liver enzymes including hepatitis (INH-ELE) was diagnosed based on the clinical diagnostic scale (CDS) designed for routine clinical practice. NAT2 genotypes were assessed by fluorescence resonance energy transfer probe after PCR analysis, and CYP2E1 genotypes were determined by PCR with restriction fragment length polymorphism analysis. RESULTS: Twenty-six patients (29%) had INH-ELE, while eight (9%) presented with INH-H leading to INH treatment interruption. We report no significant influence of NAT2 polymorphism, but we did find a significant association between the CYP2E1 *1A/*1A genotype and INH-ELE (OR: 3.4; 95% CI:1.1-12; p = 0.02) and a non significant trend for INH-H (OR: 5.9; 95% CI: 0.69-270; p = 0.13) compared with other CYP2E1 genotypes. This test for predicting INH-ELE had a positive predictive value (PPV) of 39% (95% CI: 26-54%) and a negative predictive value (NPV) of 84% (95% CI: 69-94%). CONCLUSION: The genotyping of CYP2E1 polymorphisms may be a useful predictive tool in the common setting of a highly heterogeneous population for predicting isoniazid-induced hepatic toxicity. Larger prospective randomized trials are needed to confirm these results.