1000 resultados para Ralston, William Chapman, 1826-1875.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of psychological treatments emphasising a self-management approach to chronic pain has been demonstrated by substantial empirical research. Nevertheless, high drop-out and relapse rates and low or unsuccessful engagement in self-management pain rehabilitation programs have prompted the suggestion that people vary in their readiness to adopt a self-management approach to their pain. The Pain Stages of Change Questionnaire (PSOCQ) was developed to assess a patient's readiness to adopt a self-management approach to their chronic pain. Preliminary evidence has supported the PSOCQ's psychometric properties. The current study was designed to further examine the psychometric properties of the PSOCQ, including its reliability, factorial structure and predictive validity. A total of 107 patients with an average age of 36.2 years (SD = 10.63) attending a multi-disciplinary pain management program completed the PSOCQ, the Pain Self-Efficacy Questionnaire (PSEQ) and the West Haven-Yale Multidimensional Pain Inventory (WHYMPI) pre-admission and at discharge from the program. Initial data analysis found inadequate internal consistencies of the precontemplation and action scales of the PSOCQ and a high correlation (r = 0.66, P < 0.01) between the action and maintenance scales. Principal component analysis supported a two-factor structure: 'Contemplation' and 'Engagement'. Subsequent analyses revealed that the PSEQ was a better predictor of treatment outcome than the PSOCQ scales. Discussion centres upon the utility of the PSOCQ in a clinical pain setting in light of the above findings, and a need for further research. (C) 2002 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.