974 resultados para Radio signal estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce travail présente deux nouveaux systèmes simples d'analyse de la marche humaine grâce à une caméra de profondeur (Microsoft Kinect) placée devant un sujet marchant sur un tapis roulant conventionnel, capables de détecter une marche saine et celle déficiente. Le premier système repose sur le fait qu'une marche normale présente typiquement un signal de profondeur lisse au niveau de chaque pixel avec moins de hautes fréquences, ce qui permet d'estimer une carte indiquant l'emplacement et l'amplitude de l'énergie de haute fréquence (HFSE). Le second système analyse les parties du corps qui ont un motif de mouvement irrégulier, en termes de périodicité, lors de la marche. Nous supposons que la marche d'un sujet sain présente partout dans le corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. Nous estimons, à partir de la séquence vidéo de chaque sujet, une carte montrant les zones d'irrégularités de la marche (également appelées énergie de bruit apériodique). La carte avec HFSE ou celle visualisant l'énergie de bruit apériodique peut être utilisée comme un bon indicateur d'une éventuelle pathologie, dans un outil de diagnostic précoce, rapide et fiable, ou permettre de fournir des informations sur la présence et l'étendue de la maladie ou des problèmes (orthopédiques, musculaires ou neurologiques) du patient. Même si les cartes obtenues sont informatives et très discriminantes pour une classification visuelle directe, même pour un non-spécialiste, les systèmes proposés permettent de détecter automatiquement les individus en bonne santé et ceux avec des problèmes locomoteurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to use Software Defined Radio (SDR) in the civilian mobile applications will make it possible for the next generation of mobile devices to handle multi-standard personal wireless devices and ubiquitous wireless devices. The original military standard created many beneficial characteristics for SDR, but resulted in a number of disadvantages as well. Many challenges in commercializing SDR are still the subject of interest in the software radio research community. Four main issues that have been already addressed are performance, size, weight, and power. This investigation presents an in-depth study of SDR inter-components communications in terms of total link delay related to the number of components and packet sizes in systems based on Software Communication Architecture (SCA). The study is based on the investigation of the controlled environment platform. Results suggest that the total link delay does not linearly increase with the number of components and the packet sizes. The closed form expression of the delay was modeled using a logistic function in terms of the number of components and packet sizes. The model performed well when the number of components was large. Based upon the mobility applications, energy consumption has become one of the most crucial limitations. SDR will not only provide flexibility of multi-protocol support, but this desirable feature will also bring a choice of mobile protocols. Having such a variety of choices available creates a problem in the selection of the most appropriate protocol to transmit. An investigation in a real-time algorithm to optimize energy efficiency was also performed. Communication energy models were used including switching estimation to develop a waveform selection algorithm. Simulations were performed to validate the concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce travail présente deux nouveaux systèmes simples d'analyse de la marche humaine grâce à une caméra de profondeur (Microsoft Kinect) placée devant un sujet marchant sur un tapis roulant conventionnel, capables de détecter une marche saine et celle déficiente. Le premier système repose sur le fait qu'une marche normale présente typiquement un signal de profondeur lisse au niveau de chaque pixel avec moins de hautes fréquences, ce qui permet d'estimer une carte indiquant l'emplacement et l'amplitude de l'énergie de haute fréquence (HFSE). Le second système analyse les parties du corps qui ont un motif de mouvement irrégulier, en termes de périodicité, lors de la marche. Nous supposons que la marche d'un sujet sain présente partout dans le corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. Nous estimons, à partir de la séquence vidéo de chaque sujet, une carte montrant les zones d'irrégularités de la marche (également appelées énergie de bruit apériodique). La carte avec HFSE ou celle visualisant l'énergie de bruit apériodique peut être utilisée comme un bon indicateur d'une éventuelle pathologie, dans un outil de diagnostic précoce, rapide et fiable, ou permettre de fournir des informations sur la présence et l'étendue de la maladie ou des problèmes (orthopédiques, musculaires ou neurologiques) du patient. Même si les cartes obtenues sont informatives et très discriminantes pour une classification visuelle directe, même pour un non-spécialiste, les systèmes proposés permettent de détecter automatiquement les individus en bonne santé et ceux avec des problèmes locomoteurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advancements in the area of nanotechnology have brought us into a new age of pervasive computing devices. These computing devices grow ever smaller and are being used in ways which were unimaginable before. Recent interest in developing a precise indoor positioning system, as opposed to existing outdoor systems, has given way to much research heading into the area. The use of these small computing devices offers many conveniences for usage in indoor positioning systems. This thesis will deal with using small computing devices Raspberry Pi’s to enable and improve position estimation of mobile devices within closed spaces. The newly patented Orthogonal Perfect DFT Golay coding sequences will be used inside this scenario, and their positioning properties will be tested. After that, testing and comparisons with other coding sequences will be done.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with change point analysis for time series, i.e. with detection of structural breaks in time-ordered, random data. This long-standing research field regained popularity over the last few years and is still undergoing, as statistical analysis in general, a transformation to high-dimensional problems. We focus on the fundamental »change in the mean« problem and provide extensions of the classical non-parametric Darling-Erdős-type cumulative sum (CUSUM) testing and estimation theory within highdimensional Hilbert space settings. In the first part we contribute to (long run) principal component based testing methods for Hilbert space valued time series under a rather broad (abrupt, epidemic, gradual, multiple) change setting and under dependence. For the dependence structure we consider either traditional m-dependence assumptions or more recently developed m-approximability conditions which cover, e.g., MA, AR and ARCH models. We derive Gumbel and Brownian bridge type approximations of the distribution of the test statistic under the null hypothesis of no change and consistency conditions under the alternative. A new formulation of the test statistic using projections on subspaces allows us to simplify the standard proof techniques and to weaken common assumptions on the covariance structure. Furthermore, we propose to adjust the principal components by an implicit estimation of a (possible) change direction. This approach adds flexibility to projection based methods, weakens typical technical conditions and provides better consistency properties under the alternative. In the second part we contribute to estimation methods for common changes in the means of panels of Hilbert space valued time series. We analyze weighted CUSUM estimates within a recently proposed »high-dimensional low sample size (HDLSS)« framework, where the sample size is fixed but the number of panels increases. We derive sharp conditions on »pointwise asymptotic accuracy« or »uniform asymptotic accuracy« of those estimates in terms of the weighting function. Particularly, we prove that a covariance-based correction of Darling-Erdős-type CUSUM estimates is required to guarantee uniform asymptotic accuracy under moderate dependence conditions within panels and that these conditions are fulfilled, e.g., by any MA(1) time series. As a counterexample we show that for AR(1) time series, close to the non-stationary case, the dependence is too strong and uniform asymptotic accuracy cannot be ensured. Finally, we conduct simulations to demonstrate that our results are practically applicable and that our methodological suggestions are advantageous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les techniques des directions d’arrivée (DOA) sont une voie prometteuse pour accroitre la capacité des systèmes et les services de télécommunications en permettant de mieux estimer le canal radio-mobile. Elles permettent aussi de suivre précisément des usagers cellulaires pour orienter les faisceaux d’antennes dans leur direction. S’inscrivant dans ce contexte, ce présent mémoire décrit étape par étape l’implémentation de l’algorithme de haut niveau MUSIC (MUltiple SIgnal Classification) sur une plateforme FPGA afin de déterminer en temps réel l’angle d’arrivée d’une ou des sources incidentes à un réseau d’antennes. Le concept du prototypage rapide des lois de commande (RCP) avec les outils de XilinxTM System generator (XSG) et du MBDK (Model Based Design Kit) de NutaqTM est le concept de développement utilisé. Ce concept se base sur une programmation de code haut niveau à travers des modèles, pour générer automatiquement un code de bas niveau. Une attention particulière est portée sur la méthode choisie pour résoudre le problème de la décomposition en valeurs et vecteurs propres de la matrice complexe de covariance par l’algorithme de Jacobi. L’architecture mise en place implémentant cette dernière dans le FPGA (Field Programmable Gate Array) est détaillée. Par ailleurs, il est prouvé que MUSIC ne peut effectuer une estimation intéressante de la position des sources sans une calibration préalable du réseau d’antennes. Ainsi, la technique de calibration par matrice G utilisée dans ce projet est présentée, en plus de son modèle d’implémentation. Enfin, les résultats expérimentaux du système mis à l’épreuve dans un environnement réel en présence d’une source puis de deux sources fortement corrélées sont illustrés et analysés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of radiofrequency is distributed in such a way that it is fixed to certain users called licensed users and it cannot be used by unlicensed users even though the spectrum is not in use. This inefficient use of spectrum leads to spectral holes. To overcome the problem of spectral holes and increase the efficiency of the spectrum, Cognitive Radio (CR) was used and all simulation work was done on MATLAB. Here analyzed the performance of different spectrum sensing techniques as Match filter based spectrum sensing and energy detection, which depend on various factors, systems such as Numbers of input, signal-to-noise ratio ( SNR Ratio), QPSK system and BPSK system, and different fading channels, to identify the best possible channels and systems for spectrum sensing and improving the probability of detection. The study resulted that an averaging filter being better than an IIR filter. As the number of inputs and SNR increased, the probability of detection also improved. The Rayleigh fading channel has a better performance compared to the Rician and Nakagami fading channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the X-ray nuclear and extended properties of the radio galaxy 3C 277.3, where a recent optical observation performed with the multi-unit spectroscopic explorer (MUSE) has revealed star-forming regions triggered by the propagation of non-thermal plasma in the intergalactic medium. This work aims to study the nuclear engine and its environment and, possibly, discover signatures of non-thermal plasma-gas interaction at high energies. 3C 277.3 was observed with the Chandra satellite five times from 2010 to 2014 for a total of about 200 ks. Data in the Chandra public archive were retrieved and analyzed. When necessary, the different pointings were combined to improve the signal-to-noise ratio. A detailed analysis of the Chandra image (obtained by combining all the observations) has revealed several emission regions. In addition to a bright nucleus, two jet knots and the northern hot spot were clearly detected by overlapping the X-ray data to a VLA map of the source at 1.4 GHz. An X-ray spectral analysis was performed for all these structures. Finally, the X-ray image was over-imposed on the MUSE data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radio Simultaneous Location and Mapping (SLAM) consists of the simultaneous tracking of the target and estimation of the surrounding environment, to build a map and estimate the target movements within it. It is an increasingly exploited technique for automotive applications, in order to improve the localization of obstacles and the target relative movement with respect to them, for emergency situations, for example when it is necessary to explore (with a drone or a robot) environments with a limited visibility, or for personal radar applications, thanks to its versatility and cheapness. Until today, these systems were based on light detection and ranging (lidar) or visual cameras, high-accuracy and expensive approaches that are limited to specific environments and weather conditions. Instead, in case of smoke, fog or simply darkness, radar-based systems can operate exactly in the same way. In this thesis activity, the Fourier-Mellin algorithm is analyzed and implemented, to verify the applicability to Radio SLAM, in which the radar frames can be treated as images and the radar motion between consecutive frames can be covered with registration. Furthermore, a simplified version of that algorithm is proposed, in order to solve the problems of the Fourier-Mellin algorithm when working with real radar images and improve the performance. The INRAS RBK2, a MIMO 2x16 mmWave radar, is used for experimental acquisitions, consisting of multiple tests performed in Lab-E of the Cesena Campus, University of Bologna. The different performances of Fourier-Mellin and its simplified version are compared also with the MatchScan algorithm, a classic algorithm for SLAM systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction and triboelectrification of materials show a strong correlation during sliding contacts. Friction force fluctuations are always accompanied by two tribocharging events at metal-insulator [e.g., polytetrafluoroethylene (PTFE)] interfaces: injection of charged species from the metal into PTFE followed by the flow of charges from PTFE to the metal surface. Adhesion maps that were obtained by atomic force microscopy (AFM) show that the region of contact increases the pull-off force from 10 to 150 nN, reflecting on a resilient electrostatic adhesion between PTFE and the metallic surface. The reported results suggest that friction and triboelectrification have a common origin that must be associated with the occurrence of strong electrostatic interactions at the interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física