979 resultados para Radial basis networks
Resumo:
Current parallel applications running on clusters require the use of an interconnection network to perform communications among all computing nodes available. Imbalance of communications can produce network congestion, reducing throughput and increasing latency, degrading the overall system performance. On the other hand, parallel applications running on these networks posses representative stages which allow their characterization, as well as repetitive behavior that can be identified on the basis of this characterization. This work presents the Predictive and Distributed Routing Balancing (PR-DRB), a new method developed to gradually control network congestion, based on paths expansion, traffic distribution and effective traffic load, in order to maintain low latency values. PR-DRB monitors messages latencies on intermediate routers, makes decisions about alternative paths and record communication pattern information encountered during congestion situation. Based on the concept of applications repetitiveness, best solution recorded are reapplied when saved communication pattern re-appears. Traffic congestion experiments were conducted in order to evaluate the performance of the method, and improvements were observed.
Resumo:
Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network.
Resumo:
BACKGROUND: The cerebellum is a complex structure that can be affected by several congenital and acquired diseases leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases. OBJECTIVES: To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion spectrum imaging (DSI). METHODS: We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus. RESULTS: Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal circuits: (1) connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2) connections between the cerebellar cortex and the deep cerebellar nuclei, (3) connections of the deep cerebellar nuclei conveyed in the superior (SCP), middle (MCP) and inferior (ICP) cerebellar peduncles, (4) complex intersections of fibers in the SCP, MCP and ICP, and (5) connections between the deep cerebellar nuclei and the red nucleus and the thalamus. CONCLUSION: For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions.
Resumo:
Next Generation Access Networks (NGAN) are the new step forward to deliver broadband services and to facilitate the integration of different technologies. It is plausible to assume that, from a technological standpoint, the Future Internet will be composed of long-range high-speed optical networks; a number of wireless networks at the edge; and, in between, several access technologies, among which, the Passive Optical Networks (xPON) are very likely to succeed, due to their simplicity, low-cost, and increased bandwidth. Among the different PON technologies, the Ethernet-PON (EPON) is the most promising alternative to satisfy operator and user needs, due to its cost, flexibility and interoperability with other technologies. One of the most interesting challenges in such technologies relates to the scheduling and allocation of resources in the upstream (shared) channel. The aim of this research project is to study and evaluate current contributions and propose new efficient solutions to address the resource allocation issues in Next Generation EPON (NG-EPON). Key issues in this context are future end-user needs, integrated quality of service (QoS) support and optimized service provisioning for real time and elastic flows. This project will unveil research opportunities, issue recommendations and propose novel mechanisms associated with the convergence within heterogeneous access networks and will thus serve as a basis for long-term research projects in this direction. The project has served as a platform for the generation of new concepts and solutions that were published in national and international conferences, scientific journals and also in book chapter. We expect some more research publications in addition to the ones mentioned to be generated in a few months.
Resumo:
This paper proposes a novel approach for the analysis of illicit tablets based on their visual characteristics. In particular, the paper concentrates on the problem of ecstasy pill seizure profiling and monitoring. The presented method extracts the visual information from pill images and builds a representation of it, i.e. it builds a pill profile based on the pill visual appearance. Different visual features are used to build different image similarity measures, which are the basis for a pill monitoring strategy based on both discriminative and clustering models. The discriminative model permits to infer whether two pills come from the same seizure, while the clustering models groups of pills that share similar visual characteristics. The resulting clustering structure allows to perform a visual identification of the relationships between different seizures. The proposed approach was evaluated using a data set of 621 Ecstasy pill pictures. The results demonstrate that this is a feasible and cost effective method for performing pill profiling and monitoring.
Resumo:
A large proportion of the death toll associated with malaria is a consequence of malaria infection during pregnancy, causing up to 200,000 infant deaths annually. We previously published the first extensive genetic association study of placental malaria infection, and here we extend this analysis considerably, investigating genetic variation in over 9,000 SNPs in more than 1,000 genes involved in immunity and inflammation for their involvement in susceptibility to placental malaria infection. We applied a new approach incorporating results from both single gene analysis as well as gene-gene interactionson a protein-protein interaction network. We found suggestive associations of variants in the gene KLRK1 in the single geneanalysis, as well as evidence for associations of multiple members of the IL-7/IL-7R signalling cascade in the combined analysis. To our knowledge, this is the first large-scale genetic study on placental malaria infection to date, opening the door for follow-up studies trying to elucidate the genetic basis of this neglected form of malaria.
Resumo:
Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.
Resumo:
Desmosomes are intercellular adhesive complexes that anchor the intermediate filament cytoskeleton to the cell membrane in epithelia and cardiac muscle cells. The desmosomal component desmoplakin plays a key role in tethering various intermediate filament networks through its C-terminal plakin repeat domain. To gain better insight into the cytoskeletal organization of cardiomyocytes, we investigated the association of desmoplakin with desmin by cell transfection, yeast two-hybrid, and/or in vitro binding assays. The results indicate that the association of desmoplakin with desmin depends on sequences within the linker region and C-terminal extremity of desmoplakin, where the B and C subdomains contribute to efficient binding; a potentially phosphorylatable serine residue in the C-terminal extremity of desmoplakin affects its association with desmin; the interaction of desmoplakin with non-filamentous desmin requires sequences contained within the desmin C-terminal rod portion and tail domain in yeast, whereas in in vitro binding studies the desmin tail is dispensable for association; and mutations in either the C-terminus of desmoplakin or the desmin tail linked to inherited cardiomyopathy seem to impair desmoplakindesmin interaction. These studies increase our understanding of desmoplakin-intermediate filament interactions, which are important for maintenance of cytoarchitecture in cardiomyocytes, and give new insights into the molecular basis of desmoplakin- and desmin-related human diseases.
Resumo:
Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co- ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.
Resumo:
Extreme prematurity and pregnancy conditions leading to intrauterine growth restriction (IUGR) affect thousands of newborns every year and increase their risk for poor higher order cognitive and social skills at school age. However, little is known about the brain structural basis of these disabilities. To compare the structural integrity of neural circuits between prematurely born controls and children born extreme preterm (EP) or with IUGR at school age, long-ranging and short-ranging connections were noninvasively mapped across cortical hemispheres by connection matrices derived from diffusion tensor tractography. Brain connectivity was modeled along fiber bundles connecting 83 brain regions by a weighted characterization of structural connectivity (SC). EP and IUGR subjects, when compared with controls, had decreased fractional anisotropy-weighted SC (FAw-SC) of cortico-basal ganglia-thalamo-cortical loop connections while cortico-cortical association connections showed both decreased and increased FAw-SC. FAw-SC strength of these connections was associated with poorer socio-cognitive performance in both EP and IUGR children.
Resumo:
An assortment of human behaviors is thought to be driven by rewards including reinforcement learning, novelty processing, learning, decision making, economic choice, incentive motivation, and addiction. In each case the ventral tegmental area/ventral striatum (nucleus accumbens) (VTAVS) system has been implicated as a key structure by functional imaging studies, mostly on the basis of standard, univariate analyses. Here we propose that standard functional magnetic resonance imaging analysis needs to be complemented by methods that take into account the differential connectivity of the VTAVS system in the different behavioral contexts in order to describe reward based processes more appropriately. We fi rst consider the wider network for reward processing as it emerged from animal experimentation. Subsequently, an example for a method to assess functional connectivity is given. Finally, we illustrate the usefulness of such analyses by examples regarding reward valuation, reward expectation and the role of reward in addiction.
Resumo:
The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.
Resumo:
An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions). Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd), as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial) frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency). Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition) for sine-wave gratings and decreased thresholds (i.e., summation) for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings) and the other at high luminance and contrast levels (radial frequency stimuli). We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4).
Resumo:
Recent developments in power electronics technology have made it possible to develop competitive and reliable low-voltage DC (LVDC) distribution networks. Further, islanded microgrids—isolated small-scale localized distribution networks— have been proposed to reliably supply power using distributed generations. However, islanded operations face many issues such as power quality, voltage regulation, network stability, and protection. In this thesis, an energy management system (EMS) that ensures efficient energy and power balancing and voltage regulation has been proposed for an LVDC island network utilizing solar panels for electricity production and lead-acid batteries for energy storage. The EMS uses the master/slave method with robust communication infrastructure to control the production, storage, and loads. The logical basis for the EMS operations has been established by proposing functionalities of the network components as well as by defining appropriate operation modes that encompass all situations. During loss-of-powersupply periods, load prioritizations and disconnections are employed to maintain the power supply to at least some loads. The proposed EMS ensures optimal energy balance in the network. A sizing method based on discrete-event simulations has also been proposed to obtain reliable capacities of the photovoltaic array and battery. In addition, an algorithm to determine the number of hours of electric power supply that can be guaranteed to the customers at any given location has been developed. The successful performances of all the proposed algorithms have been demonstrated by simulations.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).