893 resultados para Rabies and vaccine
Resumo:
Edwardsiella tarda is an important aquaculture pathogen that can infect a wide range of marine and freshwater fish worldwide. In this study, a modified E. tarda strain, TX5RM, was selected by multiple passages of the pathogenic E. tarda strain TX5 on growth medium containing the antibiotic rifampicin. Compared to the wild type strain, the rifampicin-resistant mutant TX5RM (i) shows drastically increased median lethal dose and reduced capacity to disseminate in and colonize fish tissues and blood; (ii) exhibits slower growth rates when cultured in rich medium or under conditions of iron depletion; and (iii) differs in the production profile of whole-cell proteins. The immunoprotective potential of TX5RM was examined in a Japanese flounder (Paralichthys olivaceus) model as a vaccine delivered via intraperitoneal injection, oral feeding, bath immersion, and oral feeding plus immersion. All the vaccination trials, except those of injection, were performed with a booster at 3-week after the first vaccination. The results showed that TX5RM administered via all four approaches produced significant protection, with the highest protection levels observed with TX5RM administered via oral feeding plus immersion, which were, in terms of relative percent of survival (RPS), 80.6% and 69.4% at 5- and 8-week post-vaccination, respectively. Comparable levels of specific serum antibody production were induced by TX5RM-vaccinated via different routes. Microbiological analyses showed that TX5RM was recovered from the gut, liver, and spleen of the fish at 1-10 days post-oral vaccination and from the spleen, liver, kidney, and blood of the fish at 1-14 days post-immersion vaccination. Taken together, these results indicate that TX5RM is an attenuated E. tarda strain with good vaccine potential and that a combination of oral and immersion vaccinations may be a good choice for the administration of live attenuated vaccines. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in certain contexts are known to be immunostimulatory in vertebrate systems. CpG ODNs with immune effects have been identified for many fish species but, to our knowledge, not for turbot. In this study, a turbot-effective CpG ODN, ODN 205, was identified and a plasmid, pCN5, was constructed which contains the CpG motif of ODN 205. When administered into turbot via intraperitoneal (i.p.) injection, both ODN 205 and pCN5 could (i) inhibit bacterial dissemination in blood in dose and time dependent manners, and (ii) protect against lethal bacterial challenge. Immunological analyses showed that in vitro treatment with ODN 205 stimulated peripheral blood leukocyte proliferation, while i.p. injection with ODN 205 enhanced the respiratory burst activity, chemiluminescence response, and acid phosphatase activity of turbot head kidney macrophages. pCN5 treatment-induced immune responses similar to those induced by ODN 205 treatment except that pCN5 could also enhance serum bactericidal activity in a calcium-independent manner. To examine whether ODN 205 and pCN5 had any effect on specific immunity, ODN 205 and pCN5 were co-administered into turbot with a Vibrio harveyi subunit vaccine, DegQ. The results showed that pCN5, but not ODN 205, significantly increased the immunoprotective efficacy of DegQ and enhanced the production of specific serum antibodies in the vaccinated fish. Further analysis indicated that vaccination with DegQ in the presence of pCN5 upregulated the expression of the genes encoding MHC class II alpha, IgM, Mx, and IL-8 receptor. Taken together, these results demonstrate that ODN 205 and pCN5 can stimulate the immune system of turbot and induce protection against bacterial challenge. In addition, pCN5 also possesses adjuvant property and can potentiate vaccine-induced specific immunity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Streptococcus iniae is a severe aquaculture pathogen that can also infect humans and animal. A putative secretory antigen, Slat 0, was identified from a pathogenic S. iniae strain by in vivo-induced antigen technology. Using turbot as an animal model, the immunoprotective effect of Sia10 was examined as a DNA vaccine in the form of plasmid pSia10, which expresses sia10 under the cytomegalovirus immediate-early promoter. In fish vaccinated with pSia10, transcription of sia10 was detected in muscle, liver, spleen, and kidney at 7, 14, 21, 28, 35, 42, and 49 days post-vaccination. In addition, production of Sia10 protein was also detected in the muscle tissues of pSia10-vaccinated fish. Fish vaccinated with pSia10 exhibited a relative percent survival (RPS) of 73.9% and 92.3%, respectively, when challenged with high and low doses (producing a cumulative mortality of 92% and 52%, respectively, in the control groups) of S. iniae. Immunological and transcriptional analyses showed that vaccination with pSia10(i) induced much stronger chemiluminescence response and significantly higher levels of nitric oxide production and acid phosphatase activity in head kidney macrophages; (ii) caused the production of specific serum antibodies, which afforded apparent immunoprotection when transferred passively into naive fish; and (iii) upregulated the expression of the genes encoding proteins that are possibly involved in both innate and adaptive immune responses. Taken together, these results indicated that pSia10 is an effective vaccine candidate and may be used in the control of S. iniae infection in aquaculture. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study is to compare the incidence and epidemiology of bacteremic community-acquired pneumonia (CAP) in the setting of changes in 13-valent pneumococcal conjugate vaccine (PCV13) coverage. In the region of Madrid, universal immunization with the PCV13 started in May 2010. In July 2012, public funding ceased. Vaccination coverage decreased from >95% to 82% in 2013 and to 67% in 2014. We performed a multicenter surveillance and case-control study from 2009-2014. Cases were hospitalized children with bacteremic CAP. Controls were children selected 1:1 from next-admitted with negative blood cultures and typical, presumed bacterial CAP. Annual incidence of bacteremic CAP declined from 7.9/100 000 children (95% CI 5.1-11.1) in 2009 to 2.1/100 000 children (95% CI 1.1-4.1) in 2012. In 2014, 2 years after PCV13 was withdrawn from the universal vaccination program, the incidence of bacteremic CAP increased to 5.4/100 000 children (95% CI 3.5-8.4). We enrolled 113 cases and 113 controls. Streptococcus pneumoniae caused most of bloodstream infections (78%). Empyema was associated with bacteremia (P = .003, OR 3.6; 95% CI 1.4-8.9). Simple parapneumonic effusion was not associated with bacteremia. Incomplete PCV immunization was not a risk factor for bacteremic pneumonia.
Resumo:
BACKGROUND: A candidate vaccine consisting of human immunodeficiency virus type 1 (HIV-1) subunit gp120 protein was found previously to be nonprotective in an efficacy trial (Vax004) despite strong antibody responses against the vaccine antigens. Here we assessed the magnitude and breadth of neutralizing antibody responses in Vax004. METHODS: Neutralizing antibodies were measured against highly sensitive (tier 1) and moderately sensitive (tier 2) strains of HIV-1 subtype B in 2 independent assays. Vaccine recipients were stratified by sex, race, and high versus low behavioral risk of HIV-1 acquisition. RESULTS: Most vaccine recipients mounted potent neutralizing antibody responses against HIV-1(MN) and other tier 1 viruses. Occasional weak neutralizing activity was detected against tier 2 viruses. The response against tier 1 and tier 2 viruses was significantly stronger in women than in men. Race and behavioral risk of HIV-1 acquisition had no significant effect on the response. Prior vaccination had little effect on the neutralizing antibody response that arose after infection. CONCLUSIONS: Weak overall neutralizing antibody responses against tier 2 viruses is consistent with a lack of protection in this trial. The magnitude and breadth of neutralization reported here should be useful for identifying improved vaccines.
Resumo:
BACKGROUND: Individuals without prior immunity to a vaccine vector may be more sensitive to reactions following injection, but may also show optimal immune responses to vaccine antigens. To assess safety and maximal tolerated dose of an adenoviral vaccine vector in volunteers without prior immunity, we evaluated a recombinant replication-defective adenovirus type 5 (rAd5) vaccine expressing HIV-1 Gag, Pol, and multiclade Env proteins, VRC-HIVADV014-00-VP, in a randomized, double-blind, dose-escalation, multicenter trial (HVTN study 054) in HIV-1-seronegative participants without detectable neutralizing antibodies (nAb) to the vector. As secondary outcomes, we also assessed T-cell and antibody responses. METHODOLOGY/PRINCIPAL FINDINGS: Volunteers received one dose of vaccine at either 10(10) or 10(11) adenovector particle units, or placebo. T-cell responses were measured against pools of global potential T-cell epitope peptides. HIV-1 binding and neutralizing antibodies were assessed. Systemic reactogenicity was greater at the higher dose, but the vaccine was well tolerated at both doses. Although no HIV infections occurred, commercial diagnostic assays were positive in 87% of vaccinees one year after vaccination. More than 85% of vaccinees developed HIV-1-specific T-cell responses detected by IFN-γ ELISpot and ICS assays at day 28. T-cell responses were: CD8-biased; evenly distributed across the three HIV-1 antigens; not substantially increased at the higher dose; and detected at similar frequencies one year following injection. The vaccine induced binding antibodies against at least one HIV-1 Env antigen in all recipients. CONCLUSIONS/SIGNIFICANCE: This vaccine appeared safe and was highly immunogenic following a single dose in human volunteers without prior nAb against the vector. TRIAL REGISTRATION: ClinicalTrials.gov NCT00119873.
Resumo:
UNLABELLED: In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE: Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.
Resumo:
The resurgence of pertussis suggests the need for greater efforts in understanding the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of humoral and B-cell memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac(®) vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa(®) (Infanrix) (GlaxoSmithKline Biologicals). We evaluated the specific immune responses in the two groups of children, 5 years after primary vaccination by measuring the persistence of IgG and antibody secreting cells (ASC) specific for vaccine antigens. Part of the enrolled children received only primary vaccination, while others had the pre-school boost dose. A similar level of antigen-specific IgG and ASC was found in Infanrix and Hexavac vaccinated children. The mean IgG levels were significantly higher in children that received the pre-school boost as compared with children that did not receive the boost dose. A longer persistence after the pre-school boost of IgG-Pertussis Toxin (PT) and IgG-pertactin levels was observed in Infanrix primed children, but it was not statistically significant. More than 80% of children presented a positive ASC B memory response. Around 50% of children still presented protective IgG-PT levels which are reduced to 36% in no-boosted children. The pre-school booster dose restores the percentage of protected children above 50%. In conclusion our data underline the importance of giving a booster dose 5 years after primary vaccination and suggest the need for a new vaccine able to induce a long lasting protective response.
Resumo:
Two different types of pertussis vaccines are currently available to protect children against whooping cough, the first-generation whole-cell (Pw) vaccines and the more recent acellular (Pa) vaccines. Both types provide good protection, yet induce different types of immune responses in 6-month-old infants, with a strong Th1 response induced by Pw vaccines compared to a mixed Th1/Th2 response and a delay in non-specific IFN-gamma secretions after the administration of Pa vaccines. We show here that at 13 months of age, most Pw- or Pa-vaccinated children display Bordetella pertussis-specific T-cell responses, in addition to significant antibody levels, although a higher Th2/Th1 cytokine ratio remained in Pa recipients compared to Pw recipients. In contrast, the proportion of children with tetanus toxin-specific T-cell responses was lower in Pa than in Pw vaccine recipients, although most children had protective anti-tetanus toxin IgG levels. In addition, the global Th2 bias observed in 6-month-old infants vaccinated with a Pa vaccine was normalized at 13 months.
Resumo:
A novel recombinant respiratory syncytial virus (RSV) subunit vaccine, designated BBG2Na, was administered to 108 healthy adults randomly assigned to receive 10, 100, or 300 μg of BBG2Na in aluminum phosphate or saline placebo. Each subject received 1, 2, or 3 intramuscular injections of the assigned dose at monthly intervals. Local and systemic reactions were mild, and no evidence of harmful properties of BBG2Na was reported. The highest ELISA and virus-neutralizing (VN) antibody responses were evident in the 100- and 300-μg groups; second or third injections provided no significant boosts against RSV-derived antigens. BBG2Na induced ⩾2-fold and ⩾4-fold increases in G2Na-specific ELISA units in up to 100% and 57% of subjects, respectively; corresponding RSV-A–specific responses were 89% and 67%. Furthermore, up to 71% of subjects had ⩾2-fold VN titer increases. Antibody responses to 2 murine lung protective epitopes were also highly boosted after vaccination. Therefore, BBG2Na is safe, well tolerated, and highly immunogenic in RSV-seropositive adults
Resumo:
The Jeryl Lynn (JL) vaccine against mumps virus (MuV) contains two components, MuV(JL5) and MuV(JL2), which differ by over 400 nt. Due to the occurrence of bias in the direction of mutation, these differences and those found in nucleotide sequences of different isolates of the minor component in the vaccine (MuV(JL2)) might be due to the effect of ADAR-like deaminases on MuV grown in tissue-cultured cells. A molecular clone Of MuV(JL2) (pMuV(JL2)) and MuV(JL2) -specific helper plasmids were constructed in order to investigate molecular interactions between MuV(JL5) and MuV(JL2), to augment the existing molecular clone Of MuV(JL)5 (pMuV(JL5)) and MuV(JL5) -specific helper plasmids. Genome and mRNA termini Of MuV(JL2) were characterized, and an unusual oligo-G insertion transcriptional editing event was detected near the F mRNA polyadenylation site of MuV(JL2), but not Of MuV(JL5). Genes encoding glycoproteins of rMuV(JL2) and rMuV(JL5) have been exchanged to characterize the oligo-G insertion, which associated with the specific sequence of the IF gene of MuV(JL2) and not with any other genes or the RNA-dependent RNA polymerase of strain MuV(JL2). The results indicate that a single G-to-A sequence change obliterates the co-transcriptional editing of the F mRNA and that this oligo-G insertion does not affect the growth of the virus.
Resumo:
Excretory secretory products (ESP) of Schistosoma mansoni developing larvae are ideal potential vaccines as such molecules may readily induce host primary immune responses, and local memory immune response effectors that would target, surround, and pursue the larvae while negotiating the lung blood capillaries. We herein characterized the cytokines response ESP, e.g., SG3PDH, 14-3-3-like protein, TPX, and calpain induce in the natural context of infection, and defined the global cytokine profile conducive to effective schistosome larvae killing. Accordingly, spleen cells (SC) taken from naive, and 7-, or 9-day S. mansoni-infected mice were stimulated in vitro with the selected ESP, in a recombinant or multiple antigen peptide (MAP) form, and examined for production of T helper type (Th) 1, Th2, and Th17 cytokines, and the ability to mediate in vitro attrition of lung-stage schistosomula. The study indicated that larval ESP principally elicit Th1 and Th17 type cytokines. Recombinant SG3PDH was the only test ESP to additionally activate SC from S. mansoni-infected BALB/c mice to release higher IL-4 levels than unstimulated SC and mediate significant (P