920 resultados para RUMINAL FERMENTATION
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Resumo:
The Maillard reaction causes changes to protein structure and occurs in foods mainly during thermal treatment. Melanoidins, the final products of the Maillard reaction, may enter the gastrointestinal tract, which is populated by different species of bacteria. In this study, melanoidins were prepared from gluten and glucose. Their effect on the growth of faecal bacteria was determined in culture with genotype and phenotype probes to identify the different species involved. Analysis of peptic and tryptic digests showed that low molecular mass products are formed from the degradation of melanoidins. Results showed a change in the growth of bacteria. This in vitro study demonstrated that melanoidins, prepared from gluten and glucose, affect the growth of the gut microflora.
Resumo:
A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Aims: To determine the fermentation profiles by human gut bacteria of arabino-oligosaccharides of varying degree of polymerization. Materials and Methods: Sugar beet arabinan was hydrolyzed with a commercial pectinase and eight fractions, of varying molecular weight, were isolated by gel-filtration chromatography. Hydrolysis fractions, arabinose, arabinan and fructo-oligosaccharides were fermented anaerobically by gut bacteria. Total bacteria, bifidobacteria, bacteroides, lactobacilli and the Clostridium perfringens/histolyticum sub. grp. were enumerated using fluorescent in situ hybridization. Results: Bifidobacteria were stimulated to different extents depending on molecular weight, i.e. maximum increase in bifidobacteria after 48 h was seen on the lower molecular weight fractions. Lactobacilli fluctuated depending on the initial inoculum levels. Bacteroides numbers varied according to fraction; arabinan, arabinose and higher oligosaccharides (degree of polymerization, dp > 8) resulted in significant increases at 24 h. Only carbohydrate mixtures with dp of 1-2 resulted in significant increases at 48 h (log 8.77 +/- 0.23). Clostridia decreased on all substrates. Conclusions: Arabino-oligosaccharides can be considered as potential prebiotics. Significance and Impact of the Study: Arabinan is widely available as it is a component of sugar beet pulp, a co-product from the sugar beet industry. Generation of prebiotic functionality from arabinan would represent significant added value to a renewable resource.
Resumo:
The fermentability of rice bran (RB), alone or in combination with one of two probiotics, by canine faecal microbiota was evaluated in stirred, pH-controlled, anaerobic batch cultures. RB enhanced the levels of bacteria detected by probes Bif164 (bifidobacteria) and Lab158 (lactic acid bacteria); however, addition of the probiotics did not have a significant effect on the predominant microbial counts compared with RB alone. RB sustained levels of Bifidobacterium longum 05 throughout the fermentation; in contrast, Lactobacillus acidophilus 14 150B levels decreased significantly after 5-h fermentation. RB fermentation induced changes in the short-chain fatty acid (SCFA) profile. However, RB combined with probiotics did not alter the SCFA levels compared with RB alone. Denaturing gradient gel electrophoresis analysis of samples obtained at 24 h showed a treatment effect with RB, which was not observed in the RB plus probiotic systems. Overall, the negative controls displayed lower species richness than the treatment systems and their banding profiles were distinct. This study illustrates the ability of a common ingredient found in pet food to modulate the canine faecal microbiota and highlights that RB may be an economical alternative to prebiotics for use in dog food.
Resumo:
Stirred, pH-controlled anaerobic batch cultures were used to investigate the in vitro effects of galacto-oligosaccharides (GOS) alone or combined with the probiotic Bifidobacterium bifidum 02 450B on the canine faecal microbiota of three different donors. GOS supported the growth of B. bifidum 02 450B throughout the fermentation. Quantitative analysis of bacterial populations by FISH revealed significant increases in Bifidobacterium spp. counts (Bif164) and a concomitant decrease in Clostridium histolyticum counts (Chis150) in the synbiotic-containing vessels compared with the controls and GOS vessels. Vessels containing probiotic alone displayed a transient increase in Bifidobacterium spp. and a transient decrease in Bacteroides spp. Denaturing gradient gel electrophoresis analysis showed that GOS elicited similar alterations in the microbial profiles of the three in vitro runs. However, the synbiotic did not alter the microbial diversity of the three runs to the same extent as GOS alone. Nested PCR using universal primers, followed by bifidobacterial-specific primers illustrated low bifidobacterial diversity in dogs, which did not change drastically during the in vitro fermentation. This study illustrates that the canine faecal microbiota can be modulated in vitro by GOS supplementation and that GOS can sustain the growth of B. bifidum 02 450B in a synbiotic combination.
Resumo:
Single-stage continuous fermentation systems were employed to examine the effects of GanedenBC30 supplementation on the human gastrointestinal microbiota in relation to pathogen challenge in vitro. Denaturing gradient gel electrophoresis analysis demonstrated that GanedenBC30 supplementation modified the microbial profiles in the fermentation systems compared with controls, with profiles clustering according to treatment. Overall, GanedenBC30 supplementation did not elicit major changes in bacterial population counts in vitro, although notably higher Bcoa191 counts were seen following probiotic supplementation (compared to the controls). Pathogen challenge did not elicit significant modification of the microbial counts in vitro, although notably higher Clit135 counts were seen in the control system post-Clostridium difficile challenge than in the corresponding GanedenBC30-supplemented systems. Sporulation appears to be associated with the anti-microbial activity of GanedenBC30, suggesting that a bi-modal lifecycle of GanedenBC30 in vivo may lead to anti-microbial activity in distal regions of the gastrointestinal tract.
Resumo:
It is now apparent that there is a strong link between health and nutrition and this can be seen clearly when we talk of obesity. The food industry is trying to capitalise on this by adapting high sugar/fat foods to become healthier alternatives. In confectionery food ingredients can be used for a range of purposes including sucrose replacement. Many of these ingredients may also evade digestion in the upper gut and be fermented by the gut microbiota upon entering the colon. This study was designed to screen a range of ingredients and their activities on the gut microbiota. In this study we screened a range of these ingredients in triplicate batch culture fermentations with known prebiotics as controls. Changes in bacteriology were monitored using FISH. SCFA were measured by GC and gas production was assessed during anaerobic batch fermentations. Bacterial enumeration showed significant increases (P ≤ 0.05) in bifidobacteria and lactobacilli with polydextrose and most polyols with no significant increases in Clostridium histolyticum/perfringens. SCFA and gas formation indicated that the substrates added to the fermenters were being utilised by the gut microbiota. It therefore appears these ingredients exert some prebiotic activity in vitro. Further studies, particularly in human volunteers, are necessary.