922 resultados para ROC Regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postprint (published version)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetylation was performed to reduce the polarity of wood and increase its compatibility with polymer matrices for the production of composites. These reactions were performed first as a function of acetic acid and anhydride concentration in a mixture catalyzed by sulfuric acid. A concentration of 50%/50% (v/v) of acetic acid and anhydride was found to produced the highest conversion rate between the functional groups. After these reactions, the kinetics were investigated by varying times and temperatures using a 3² factorial design, and showed time was the most relevant parameter in determining the conversion of hydroxyl into carbonyl groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing demand of consumer markets for the welfare of birds in poultry house has motivated many scientific researches to monitor and classify the welfare according to the production environment. Given the complexity between the birds and the environment of the aviary, the correct interpretation of the conduct becomes an important way to estimate the welfare of these birds. This study obtained multiple logistic regression models with capacity of estimating the welfare of broiler breeders in relation to the environment of the aviaries and behaviors expressed by the birds. In the experiment, were observed several behaviors expressed by breeders housed in a climatic chamber under controlled temperatures and three different ammonia concentrations from the air monitored daily. From the analysis of the data it was obtained two logistic regression models, of which the first model uses a value of ammonia concentration measured by unit and the second model uses a binary value to classify the ammonia concentration that is assigned by a person through his olfactory perception. The analysis showed that both models classified the broiler breeder's welfare successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broiler rectal temperature (t rectal) is one of the most important physiological responses to classify the animal thermal comfort. Therefore, the aim of this study was to adjust regression models in order to predict the rectal temperature (t rectal) of broiler chickens under different thermal conditions based on age (A) and a meteorological variable (air temperature - t air) or a thermal comfort index (temperature and humidity index -THI or black globe humidity index - BGHI) or a physical quantity enthalpy (H). In addition, through the inversion of these models and the expected t rectal intervals for each age, the comfort limits of t air, THI, BGHI and H for the chicks in the heating phase were determined, aiding in the validation of the equations and the preliminary limits for H. The experimental data used to adjust the mathematical models were collected in two commercial poultry farms, with Cobb chicks, from 1 to 14 days of age. It was possible to predict the t rectal of conditions from the expected t rectal and determine the lower and superior comfort thresholds of broilers satisfactorily by applying the four models adjusted; as well as to invert the models for prediction of the environmental H for the chicks first 14 days of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singular Value Decomposition (SVD), Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) are some of the mathematical pre- liminaries that are discussed prior to explaining PLS and PCR models. Both PLS and PCR are applied to real spectral data and their di erences and similarities are discussed in this thesis. The challenge lies in establishing the optimum number of components to be included in either of the models but this has been overcome by using various diagnostic tools suggested in this thesis. Correspondence analysis (CA) and PLS were applied to ecological data. The idea of CA was to correlate the macrophytes species and lakes. The di erences between PLS model for ecological data and PLS for spectral data are noted and explained in this thesis. i

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiopulmonary reflexes are activated via changes in cardiac filling pressure (volume-sensitive reflex) and chemical stimulation (chemosensitive reflex). The sensitivity of the cardiopulmonary reflexes to these stimuli is impaired in the spontaneously hypertensive rat (SHR) and other models of hypertension and is thought to be associated with cardiac hypertrophy. The present study investigated whether the sensitivity of the cardiopulmonary reflexes in SHR is restored when cardiac hypertrophy and hypertension are reduced by enalapril treatment. Untreated SHR and WKY rats were fed a normal diet. Another groups of rats were treated with enalapril (10 mg kg-1 day-1, mixed in the diet; SHRE or WKYE) for one month. After treatment, the volume-sensitive reflex was evaluated in each group by determining the decrease in magnitude of the efferent renal sympathetic nerve activity (RSNA) produced by acute isotonic saline volume expansion. Chemoreflex sensitivity was evaluated by examining the bradycardia response elicited by phenyldiguanide administration. Cardiac hypertrophy was determined from the left ventricular/body weight (LV/BW) ratio. Volume expansion produced an attenuated renal sympathoinhibitory response in SHR as compared to WKY rats. As compared to the levels observed in normotensive WKY rats, however, enalapril treatment restored the volume expansion-induced decrease in RSNA in SHRE. SHR with established hypertension had a higher LV/BW ratio (45%) as compared to normotensive WKY rats. With enalapril treatment, the LV/BW ratio was reduced to 19% in SHRE. Finally, the reflex-induced bradycardia response produced by phenyldiguanide was significantly attenuated in SHR compared to WKY rats. Unlike the effects on the volume reflex, the sensitivity of the cardiac chemosensitive reflex to phenyldiguanide was not restored by enalapril treatment in SHRE. Taken together, these results indicate that the impairment of the volume-sensitive, but not the chemosensitive, reflex can be restored by treatment of SHR with enalapril. It is possible that by augmenting the gain of the volume-sensitive reflex control of RSNA, enalapril contributed to the reversal of cardiac hypertrophy and normalization of arterial blood pressure in SHR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymyositis (PM) is an autoimmune disease characterized by chronic inflammation in skeletal muscle. Mean platelet volume (MPV), a marker in the assessment of systemic inflammation, is easily measured by automatic blood count equipment. However, to our knowledge, there are no data in the literature with respect to MPV levels in PM patients. Therefore, in this study we aimed to investigate MPV levels in patients with PM. This study included 92 newly diagnosed PM patients and 100 healthy individuals. MPV levels were found to be significantly lower compared with healthy controls (10.3±1.23 vs 11.5±0.74 fL, P<0.001). Interestingly, MPV was found to be positively correlated with manual muscle test (MMT) score and negatively correlated with erythrocyte sedimentation rate (ESR) in patients with PM (r=0.239, P=0.022; r=−0.268, P=0.010, respectively). In addition, MPV was significantly lower in active PM patients compared with inactive PM patients (9.9±1.39 vs 10.6±0.92 fL, P=0.010). MPV was independently associated with PM in multivariate regression analyses, when controlling for hemoglobin and ESR (OR=0.312, P=0.031, 95%CI=0.108 to 0.899). The ROC curve analysis for MPV in estimating PM patients resulted in an area under the curve of 0.800, with sensitivity of 75.0% and specificity of 67.4%. Our results suggest that MPV is inversely correlated with disease activity in patients with PM. MPV might be a useful tool for rapid assessment of disease severity in PM patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered probit regression was used to analyze data of sensory acceptance tests designed to study the effect of brand name on the acceptability of beer samples. Eight different brands of Pilsen beer were evaluated by 101 consumers in two sessions of acceptance tests: blind evaluation and brand information test. Ordered probit regression, although a relatively sophisticated technique compared to others used to analyze sensory data, was chosen to enable the observation of consumers' behavior using graphical interpretations of estimated probabilities plotted against hedonic scales. It can be concluded that brands B, C, and D had a positive effect on the sensory acceptance of the product, whereas brands A, F, G, and H had a negative influence on consumers' evaluation of the samples. On the other hand, brand E had little influence on consumers' assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study developed a gluten-free granola and evaluated it during storage with the application of multivariate and regression analysis of the sensory and instrumental parameters. The physicochemical, sensory, and nutritional characteristics of a product containing quinoa, amaranth and linseed were evaluated. The crude protein and lipid contents ranged from 97.49 and 122.72 g kg-1 of food, respectively. The polyunsaturated/saturated, and n-6:n-3 fatty acid ratios ranged from 2.82 and 2.59:1, respectively. Granola had the best alpha-linolenic acid content, nutritional indices in the lipid fraction, and mineral content. There were good hygienic and sanitary conditions during storage; probably due to the low water activity of the formulation, which contributed to inhibit microbial growth. The sensory attributes ranged from 'like very much' to 'like slightly', and the regression models were highly fitted and correlated during the storage period. A reduction in the sensory attribute levels and in the product physical stabilisation was verified by principal component analysis. The use of the affective test acceptance and instrumental analysis combined with statistical methods allowed us to obtain promising results about the characteristics of gluten-free granola.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to describe the nonlinear association between body mass index (BMI) and breast cancer outcomes and to determine whether BMI improves prediction of outcomes. A cohort of906 breast cancer patients diagnosed at Henry Ford Health System, Detroit (1985-1990) were studied. The median follow-up was 10 years. Multivariate logistic regression was used to model breast cancer recurrence/progression and breast cancer-specific death. Restricted cubic splines were used to model nonlinear effects. Receiver operator characteristic areas under the curves (ROC AUC) were used to evaluate prediction. BMI was nonlinearly associated with recurrence/progression and death (p= 0.0230 and 0.0101). Probability of outcomes increased with increase or decrease ofBMI away from 25. BMI splines were suggestive of improved prediction of death. The ROC AUCs for nested models with and without BMI were 0.8424 and 0.8331 (p= 0.08). I f causally associated, modifying patients BMI towards 25 may improve outcomes.