936 resultados para RNA degradosome
Resumo:
Breast cancer is the most common diagnosed cancer and the leading cause of cancer death among females worldwide. It is considered a highly heterogeneous disease and it must be classified into more homogeneous groups. Hence, the purpose of this study was to classify breast tumors based on variations in gene expression patterns derived from RNA sequencing by using different class discovery methods. 42 breast tumors paired-samples were sequenced by Illumine Genome Analyzer and the data was analyzed and prepared by TopHat2 and htseq-count. As reported previously, breast cancer could be grouped into five main groups known as basal epithelial-like group, HER2 group, normal breast-like group and two Luminal groups with a distinctive expression profile. Classifying breast tumor samples by using PAM50 method, the most common subtype was Luminal B and was significantly associated with ESR1 and ERBB2 high expression. Luminal A subtype had ESR1 and SLC39A6 significant high expression, whereas HER2 subtype had a high expression of ERBB2 and CNNE1 genes and low luminal epithelial gene expression. Basal-like and normal-like subtypes were associated with low expression of ESR1, PgR and HER2, and had significant high expression of cytokeratins 5 and 17. Our results were similar compared with TGCA breast cancer data results and with known studies related with breast cancer classification. Classifying breast tumors could add significant prognostic and predictive information to standard parameters, and moreover, identify marker genes for each subtype to find a better therapy for patients with breast cancer.
Resumo:
Els RNA (o ARN, àcids ribonucleics) són biomolècules lineals de cadena senzilla, com un fil, formades per la unió seqüencial d'altres molècules més senzilles, els nucleòtids. Abans de la descoberta del fenòmen de RNAi es creia que el RNA era només un intermediari silenciós de la maquinària genètica, que transportava cegament les instruccions dels gens, en descodificava el missatge i el convertia en proteïnes, procés que es coneix amb el nom de flux d'informació genètica (del gen, que emmagatzema la informació i és format per ADN, a les proteïnes, que fan la feina especificada pel gen) [...].
Resumo:
Sixteen transgenic yellow passionfruit (Passiflora spp.) plants (R0) were obtained which express a non-translatable transgenic RNA corresponding to the 3' region of the NIb gene and the 5' region of the CP gene, derived from the genome of a Brazilian isolate of Cowpea aphid-borne mosaic virus (CABMV). The transgenic plants were propagated by stem cuttings and challenged by sap inoculation with isolates CABMV-MG1 and CABMV-PE1. One transgenic plant (TE5-10) was resistant to the isolate CABMV-MG1, but susceptible to CABMV-PE1. The remaining transgenic plants developed systemic symptoms, equal to non-transformed plants, when inoculated with either isolate. The absence of virus in TE5-10 plants was confirmed by indirect ELISA. Transcription analysis of the transgene demonstrated that the TE5-10 plant did not accumulate transgenic mRNA, even before inoculation. After inoculation, viral RNA was only detected in plants inoculated with CABMV-PE1. These results confirm that the transgenic plant TE5-10 is resistant to isolate CABMV-MG1, and suggest that the resistance mechanism is post-transcriptional gene silencing, which is already activated in the transgenic plants before virus inoculation.
Resumo:
Até meados do século XX, os vírus eram considerados os representantes mais simples da escala biológica. A descoberta dos RNAs satélites e dos viróides por volta de 1970 foi surpreendente, pois comprovou-se a existência de uma nova classe de moléculas auto-replicativas ainda mais simples, denominada agentes sub-virais. Há indícios de que os viróides e virusóides (que formam uma classe de RNAs satélites), teriam feito parte do "Mundo de RNA" (que precedeu o mundo atual baseado no DNA e proteínas), podendo ser considerados fósseis moleculares dessa era antiga. A simplicidade desses agentes sub-virais e o fato de que a molécula de RNA deve interagir diretamente com fatores do hospedeiro para o desenvolvimento do seu ciclo infeccioso colocam esses patógenos como um modelo para o estudo de processos metabólicos celulares. Nos últimos anos, tem-se observado um volume grande de publicações visando elucidar aspectos da interação viróide/hospedeiro, como os mecanismos da patogênese, movimento dos viróides nas plantas hospedeiras, silenciamento gênico e atividades das ribozimas. Mudanças recentes ocorridas na taxonomia desses patógenos com a criação de famílias, gêneros e espécies, além da descoberta de novos viróides, também têm sido verificadas. A presente revisão visa atualizar o leitor quanto aos recentes avanços nas pesquisas com viróides, principalmente na taxonomia, filogenia e em vários aspectos moleculares da interação viróide/hospedeiro. Estão incluídas também algumas características dos virusóides e sua relação evolutiva com os viróides.
Resumo:
RNA is essential for all living organisms. It has important roles in protein synthesis, controlling gene expression as well as catalyzing biological reactions. Chemically RNA is a very stable molecule, although in biological systems many agents catalyze the cleavage of RNA, such as naturally occurring enzymes and ribozymes. Much effort has been put in the last decades in developing highly active artificial ribonucleases since such molecules could have potential in the therapeutic field and provide tools for molecular biology. Several potential catalysts have emerged, but usually detailed cleavage mechanism remains unresolved. This thesis is aimed at clarifying mechanistic details of the cleavage and isomerization of RNA by using simpler nucleoside models of RNA. The topics in the experimental part cover three different studies, one concerning the mechanism of catalysis by large ribozymes, one dealing with the reactivity of modified and unmodified RNA oligonucleotides and one showing an efficient catalysis of the cleavage and isomerization of an RNA phosphodiester bond by a dinuclear metal ion complex. A review of the literature concerning stabilization of the phosphorane intermediate of the hydrolysis and isomerization of RNA phosphodiester bond is first presented. The results obtained in the experimental work followed by mechanistic interpretations are introduced in the second part of the thesis. Especially the significance of hydrogen bonding interactions is discussed.
Resumo:
Rabies is a neurological disease, but the rabies virus spread to several organs outside the central nervous system (CNS). The rabies virus antigen or RNA has been identified from the salivary glands, the lungs, the kidneys, the heart and the liver. This work aimed to identify the presence of the rabies virus in non-neuronal organs from naturally-infected vampire bats and to study the rabies virus in the salivary glands of healthy vampire bats. Out of the five bats that were positive for rabies in the CNS, by fluorescent antibody test (FAT), viral isolation in N2A cells and reverse transcription - polymerase chain reaction (RT-PCR), 100% (5/5) were positive for rabies in samples of the tongue and the heart, 80% (4/5) in the kidneys, 40% (2/5) in samples of the salivary glands and the lungs, and 20% (1/5) in the liver by RT-PCR test. All the nine bats that were negative for rabies in the CNS, by FAT, viral isolation and RT-PCR were negative for rabies in the salivary glands by RT-PCR test. Possible consequences for rabies epidemiology and pathogenesis are discussed in this work.
Resumo:
Male germ cell differentiation, spermatogenesis is an exceptional developmental process that produces a massive amount of genetically unique spermatozoa. The complexity of this process along with the technical limitations in the germline research has left many aspects of spermatogenesis poorly understood. Post-meiotic haploid round spermatids possess the most complex transcriptomes of the whole body. Correspondingly, efficient and accurate control mechanisms are necessary to deal with the huge diversity of transcribed RNAs in these cells. The high transcriptional activity in round spermatids is accompanied by the presence of an uncommonly large cytoplasmic ribonucleoprotein granule, called the chromatoid body (CB) that is conjectured to participate in the RNA post-transcriptional regulation. However, very little is known about the possible mechanisms of the CB function. The development of a procedure to isolate CBs from mouse testes was this study’s objective. Anti-MVH immunoprecipitation of cross-linked CBs from a fractionated testicular cell lysate was optimized to yield considerable quantities of pure and intact CBs from mice testes. This protocol produced reliable and reproducible data from the subsequent analysis of CB’s protein and RNA components. We found that the majority of the CB’s proteome consists of RNA-binding proteins that associate functionally with different pathways. We also demonstrated notable localization patterns of one of the CB transient components, SAM68 and showed that its ablation does not change the general composition or structure of the CB. CB-associated RNA analysis revealed a strong accumulation of PIWI-interacting RNAs (piRNAs), mRNAs and long non-coding RNAs (lncRNAs) in the CB. When the CB transcriptome and proteome analysis results were combined, the most pronounced molecular functions in the CB were related to piRNA pathway, RNA post-transcriptional processing and CB structural scaffolding. In addition, we demonstrated that the CB is a target for the main RNA flux from the nucleus throughout all steps of round spermatid development. Moreover, we provided preliminary evidence that those isolated CBs slice target RNAs in vitro in an ATPdependent manner. Altogether, these results make a strong suggestion that the CB functions involve RNA-related and RNA-mediated mechanisms. All the existing data supports the hypothesis that the CB coordinates the highly complex haploid transcriptome during the preparation of the male gametes for fertilization. Thereby, this study provides a fundamental basis for the future functional analyses of ribonucleoprotein granules and offers also important insights into the mechanisms governing male fertility.
Resumo:
Recent research has shown that receptor-ligand interactions between surfaces of communicating cells are necessary prerequisites for cell proliferation, cell differentiation and immune defense. Cell-adhesion events have also been proposed for pathological conditions such as cancer growth, metastasis, and host-cell invasion by parasites such as Trypanosoma cruzi. RNA and DNA aptamers (aptus = Latin, fit) that have been selected from combinatorial nucleic acid libraries are capable of binding to cell-adhesion receptors leading to a halt in cellular processes induced by outside signals as a consequence of blockage of receptor-ligand interactions. We outline here a novel approach using RNA aptamers that bind to T. cruzi receptors and interrupt host-cell invasion in analogy to existing procedures of blocking selectin adhesion and function in vitro and in vivo.
Resumo:
DEAD-box proteins comprise a family of ATP-dependent RNA helicases involved in several aspects of RNA metabolism. Here we report the characterization of the human DEAD-box RNA helicase DDX26. The gene is composed of 14 exons distributed over an extension of 8,123 bp of genomic sequence and encodes a transcript of 1.8 kb that is expressed in all tissues evaluated. The predicted amino acid sequence shows a high similarity to a yeast DEAD-box RNA helicase (Dbp9b) involved in ribosome biogenesis. The new helicase maps to 7p12, a region of frequent chromosome amplifications in glioblastomas involving the epidermal growth factor receptor (EGFR) gene. Nevertheless, co-amplification of DDX26 with EGFR was not detected in nine tumors analyzed.
Resumo:
The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.
Resumo:
Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV) frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV) and an antigenically identical but cytopathic virus (cpBVDV) can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98%) to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.
Resumo:
In order to investigate signal transduction and activation of transcription 3 (STAT3) signaling on angiogenesis in colorectal carcinoma (CRC) after inhibiting STAT3 expression, we constructed the HT-29-shSTAT3 cell line by lentivirus-mediated RNAi. Cell growth was assessed with MTT and the cell cycle distribution by flow cytometry. CRC nude mouse models were established and tumor growth was monitored periodically. On day 30, all mice were killed and tumor tissues were removed. Microvessel density (MVD) was determined according to CD34-positive staining. The expression of vascular endothelial growth factor A (VEGFA), matrix metalloproteinase-2 (MMP2) and basic fibroblast growth factor (FGF2) was monitored by quantitative real-time PCR and Western blot analysis. Knockdown of STAT3 expression significantly inhibited cell growth in HT-29 cells, with a significantly higher proportion of cells at G0/G1 (P < 0.01). Consistently, in vivo data also demonstrated that tumor growth was significantly inhibited in mice injected with HT-29-shSTAT3 cells. MVD was 9.80 ± 3.02 in the HT-29-shSTAT3 group, significantly less than that of the control group (P < 0.01). mRNA and protein levels of VEGFA and MMP2 in the HT-29-shSTAT3 group were significantly lower than in the control group (P < 0.05), but no significant difference was observed in the mRNA or protein level of FGF2 (P > 0.05). Taken together, these results demonstrate that STAT3 signaling is important to the growth of CRC and promotes angiogenesis by regulating VEGFA and MMP2 expression.
Resumo:
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Resumo:
Protein phosphatase magnesium/manganese-dependent 1D (PPM1D) is a p53-induced phosphatase that functions as a negative regulator of stress response pathways and has oncogenic properties. However, the functional role ofPPM1D in bladder cancer (BC) remains largely unknown. In the present study, lentivirus vectors carrying small hairpin RNA (shRNA) targeting PPM1D were used to explore the effects ofPPM1D knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of PPM1D significantly inhibited cell growth and colony forming ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that PPM1D silencing increased the proportion of cells in the G0/G1 phase. Downregulation of PPM1Dalso inhibited 5637 cell tumorigenicity in nude mice. The results of the present study suggest that PPM1D plays a potentially important role in BC tumorigenicity, and lentivirus-mediated delivery of shRNA againstPPM1D might be a promising therapeutic strategy for the treatment of BC.