987 resultados para RAT-HEART
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
OBJECTIVE: This study evaluated the performance of lungs that were preserved with different solutions (Celsior, Perfadex or saline) in an ex vivo rat lung perfusion system. METHODS: Sixty Wistar rats were anesthetized, anticoagulated and randomized into three groups (n = 20). The rats were subjected to antegrade perfusion via the pulmonary artery with Perfadex, Celsior, or saline, followed by 6 or 12 hours of ischemia (4 degrees C, n = 10 in each group). Respiratory mechanics, gas exchange and hemodynamics were measured at 10-minute intervals during the reperfusion of heart-lung blocks in an ex vivo system (IL2-Isolated Perfused Rat or Guinea Pig Lung System, Harvard Apparatus, Holliston, Massachusetts, USA; Hugo Sachs Elektronik, Germany) for 60 minutes. The lungs were prepared for histopathology and evaluated for edema following reperfusion. Group comparisons were performed using ANOVA and the Kruskal-Wallis test with a 5% level of significance. RESULTS: Gas exchange was not significantly different between lungs perfused with either Perfadex or Celsior at the same ischemic times, but it was very low in lungs that were preserved with saline. Airway resistance was greater in the lungs that were preserved for 12 hours. Celsior lungs that were preserved for 6 and 12 hours exhibited lower airway resistance (p = 0.01) compared to Perfadex lungs. Pulmonary artery pressure was not different between the groups, and no significant differences in histopathology and apoptosis were observed between the groups. CONCLUSIONS: Lungs that were preserved with Celsior or Perfadex exhibited similar gas exchange and histopathological findings. Airway resistance was slightly lower in the Celsior-preserved lungs compared with the Perfadex-preserved lungs.
Resumo:
Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Here we report the isolation of carboxypeptidases A1 and A2 (CPA1 and CPA2) from the rat mesenteric arterial bed perfusate, which were found to be identical with their pancreatic counterparts. Angiotensin (Ang) I, Ang II, Ang-(1-9) and Ang-(1-12) were differentially processed by these enzymes, worthy mentioning the peculiar CPA1-catalyzed conversion of Ang II to Ang-(1-7) and the CPA2-mediated formation of Ang I from Ang-(1-12). We detected gene transcripts for CPA1 and CPA2 in mesentery and other extrapancreatic tissues, indicating that these CPAs might play a role in the renin-angiotensin system in addition to their functions as digestive enzymes. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background. There is a growing need to improve heart preservation benefit the performance of cardiac operations, decrease morbidity, and more important, increase the donor pool. Therefore, the objective of this study was to evaluate the cardioprotective effects of Krebs-Henseleit buffer (KHB), Bretschneider-HTK (HTK), St. Thomas No. 1 (STH-1), and Celsior (CEL) solutions infused at 10 degrees C and 20 degrees C. Methods. Hearts isolated from male albino Wistar rats and prepared according to Langendorff were randomly divided equally into 8 groups according to the temperature of infusion (10 degrees C or 20 degrees C) and cardioprotective solutions (KHB, HTK, STH-1, and CEL). After stabilization with KHB at 37 degrees C, baseline values were collected (control) for heart rate (HR), left ventricle systolic pressure (LVSP), coronary flow (CF), maximum rate of rise of left ventricular pressure during ventricular contraction (+dP/dt) and maximum rate of fall of left ventricular pressure during left ventricular relaxation (-dP/dt). The hearts were then perfused with cardioprotective solutions for 5 minutes and kept for 2 hours in static ischemia at 20 degrees C. Data evaluation used analysis of variance (ANOVA) in all together randomized 2-way ANOVA and Tukey's test for multiple comparisons. The level of significance chosen was P < .05. Results. We observed that all 4 solutions were able to recover HR, independent of temperature. Interestingly, STH-1 solution at 20 degrees C showed HR above baseline throughout the experiment. An evaluation of the corresponding hemodynamic values (LVSP, +dP/dt, and -dP/dt) indicated that treatment with CEL solution was superior at both temperatures compared with the other solutions, and had better performance at 20 degrees C. When analyzing performance on CF maintenance, we observed that it was temperature dependent. However, when applying both HTK and CEL, at 10 degrees C and 20 degrees C respectively, indicated better protection against development of tissue edema. Multiple comparisons between treatments and hemodynamic variable outcomes showed that using CEL solution resulted in significant improvement compared with the other solutions at both temperatures. Conclusion. The solutions investigated were not able to fully suppress the deleterious effects of ischemia and reperfusion of the heart. However, these results allow us to conclude that temperature and the cardioprotective solution are interdependent as far as myocardial protection. Although CEL solution is the best for in myocardial protection, more studies are needed to understand the interaction between temperature and perfusion solution used. This will lead to development of better and more efficient cardioprotective methods.
Resumo:
Inoue BH, dos Santos L, Pessoa TD, Antonio EL, Pacheco BPM, Savignano FA, Carraro-Lacroix LR, Tucci PJF, Malnic G, Girardi ACC. Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure. Am J Physiol Regul Integr Comp Physiol 302: R166-R174, 2012. First published October 26, 2011; doi:10.1152/ajpregu.00127.2011.-Heart failure (HF) is associated with a reduced effective circulating volume that drives sodium and water retention and extracellular volume expansion. We therefore hypothesized that Na(+)/H(+) exchanger isoform 3 (NHE3), the major apical transcellular pathway for sodium reabsorption in the proximal tubule, is upregulated in an experimental model of HF. HF was induced in male rats by left ventricle radiofrequency ablation. Sham-operated rats (sham) were used as controls. At 6 wk after surgery, HF rats exhibited cardiac dysfunction with a dramatic increase in left ventricular end-diastolic pressure. By means of stationary in vivo microperfusion and pH-dependent sodium uptake, we demonstrated that NHE3 transport activity was significantly higher in the proximal tubule of HF compared with sham rats. Increased NHE3 activity was paralleled by increased renal cortical NHE3 expression at both protein and mRNA levels. In addition, the baseline PKA-dependent NHE3 phosphorylation at serine 552 was reduced in renal cortical membranes of rats with HF. Collectively, these results suggest that NHE3 is upregulated in the proximal tubule of HF rats by transcriptional, translational, and posttranslational mechanisms. Enhanced NHE3-mediated sodium reabsorption in the proximal tubule may contribute to extracellular volume expansion and edema, the hallmark feature of HF. Moreover, our study emphasizes the importance of undertaking a cardiorenal approach to contain progression of cardiac disease.
Resumo:
Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform beta II (PKC beta II) in disrupting PQC. We show that active PKC beta II directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKC beta II, using a selective PKC beta II peptide inhibitor (beta IIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKC beta II increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, beta IIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKC beta II activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKC beta II as a novel inhibitor of proteasomal function. PQC disruption by increased PKC beta II activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKC beta II inhibition may benefit patients with heart failure. (218 words)
Resumo:
Background: Post-rest contraction (PRC) of cardiac muscle provides indirect information about the intracellular calcium handling. Objective: Our aim was to study the behavior of PRC, and its underlying mechanisms, in rats with myocardial infarction. Methods: Six weeks after coronary occlusion, the contractility of papillary muscles (PM) obtained from sham-operated (C, n = 17), moderate infarcted (MMI, n = 10) and large infarcted (LMI, n = 14) rats was evaluated, following rest intervals of 10 to 60 seconds before and after incubation with lithium chloride (Li+) substituting sodium chloride or ryanodine (Ry). Protein expression of SR Ca(2+)-ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLB) and phospho-Ser(16)-PLB were analyzed by Western blotting. Results: MMI exhibited reduced PRC potentiation when compared to C. Opposing the normal potentiation for C, post-rest decays of force were observed in LMI muscles. In addition, Ry blocked PRC decay or potentiation observed in LMI and C; Li+ inhibited NCX and converted PRC decay to potentiation in LMI. Although MMI and LMI presented decreased SERCA2 (72 +/- 7% and 47 +/- 9% of Control, respectively) and phospho-Ser(16)-PLB (75 +/- 5% and 46 +/- 11%, respectively) protein expression, overexpression of NCX (175 +/- 20%) was only observed in LMI muscles. Conclusion: Our results showed, for the first time ever, that myocardial remodeling after MI in rats may change the regular potentiation to post-rest decay by affecting myocyte Ca(2+) handling proteins. (Arq Bras Cardiol 2012;98(3):243-251)
Resumo:
Objective: Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain. Methods: The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured. Results: The resting HR decreased (, 12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p, 0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups. Conclusion: Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats.
Resumo:
Abstract Background Tachycardia is commonly observed in hypertensive patients, predominantly mediated by regulatory mechanisms integrated within the autonomic nervous system. The genetic loci and genes associated with increased heart rate in hypertension, however, have not yet been identified. Methods An F2 intercross of Spontaneously Hypertensive Rats (SHR) × Brown Norway (BN) linkage analysis of quantitative trait loci mapping was utilized to identify candidate genes associated with an increased heart rate in arterial hypertension. Results Basal heart rate in SHR was higher compared to that of normotensive BN rats (365 ± 3 vs. 314 ± 6 bpm, p < 0.05 for SHR and BN, respectively). A total genome scan identified one quantitative trait locus in a 6.78 cM interval on rat chromosome 8 (8q22–q24) that was responsible for elevated heart rate. This interval contained 241 genes, of which 65 are known genes. Conclusion Our data suggest that an influential genetic region located on the rat chromosome 8 contributes to the regulation of heart rate. Candidate genes that have previously been associated with tachycardia and/or hypertension were found within this QTL, strengthening our hypothesis that these genes are, potentially, associated with the increase in heart rate in a hypertension rat model.
Resumo:
Myocardial fibrosis contributes to hemodynamic and cardiac functional alterations commonly observed posttransplantation. Cardiac mast cells (MC) have been linked to fibrosis in posttransplantation hearts. Eotaxin, which has been shown to be involved in fibrogenesis, has been demonstrated to be increased in production in cardiac macrophages. The aim of our study was to correlate myocardial fibrosis during heart transplant rejection in the rat with eotaxin/chemokine [c-c motif] ligand 11 (CCL11) expression, and with various subtypes of infiltrating cardiac MC, namely connective-type MC (CTMC) and mucosa-type MC (MMC).
Resumo:
Cell transplantation presents great potential for treatment of patients with severe heart failure. However, its clinical application was revealed to be more challenging than initially expected in experimental studies. Further investigations need to be undertaken to define the optimal treatment conditions. We previously reported on the epicardial implantation of a bio-engineered construct of skeletal myoblast-seeded polyurethane and its preventive effect on progression toward heart failure. In the present study, we present a long-term evaluation of this functional outcome. Left anterior descending coronary ligation was performed in female Lewis rats. Two weeks later, animals were treated with either epicardial implantation of biograft, acellular scaffold, sham operation, or direct intramyocardial skeletal myoblast injection. Functional assessments were performed with serial echocardiographies every 3 months and end point left ventricle pressure was assessed. Hearts were then harvested for histological examinations. Myocardial infarction induced a slow and progressive reduction in fractional shortening after 3 months. Progression toward heart failure was significantly prevented for up to 6 months after injection of myoblasts and for up to 9 months following biograft implantation. Nevertheless, this effect vanished after 12 months, with immunohistological examinations revealing an absence of the transplanted myoblasts within the scaffold. We demonstrated that tissue therapy is superior to cell therapy for stabilization of heart function. However, beneficial effects are transient.
Resumo:
Dahl salt-sensitive (DS) and salt-resistant (DR) inbred rat strains represent a well established animal model for cardiovascular research. Upon prolonged administration of high-salt-containing diet, DS rats develop systemic hypertension, and as a consequence they develop left ventricular hypertrophy, followed by heart failure. The aim of this work was to explore whether this animal model is suitable to identify biomarkers that characterize defined stages of cardiac pathophysiological conditions. The work had to be performed in two stages: in the first part proteomic differences that are attributable to the two separate rat lines (DS and DR) had to be established, and in the second part the process of development of heart failure due to feeding the rats with high-salt-containing diet has to be monitored. This work describes the results of the first stage, with the outcome of protein expression profiles of left ventricular tissues of DS and DR rats kept under low salt diet. Substantial extent of quantitative and qualitative expression differences between both strains of Dahl rats in heart tissue was detected. Using Principal Component Analysis, Linear Discriminant Analysis and other statistical means we have established sets of differentially expressed proteins, candidates for further molecular analysis of the heart failure mechanisms.
Resumo:
This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.