934 resultados para RANDOM PERMUTATION MODEL
Resumo:
Many variables that are of interest in social science research are nominal variables with two or more categories, such as employment status, occupation, political preference, or self-reported health status. With longitudinal survey data it is possible to analyse the transitions of individuals between different employment states or occupations (for example). In the statistical literature, models for analysing categorical dependent variables with repeated observations belong to the family of models known as generalized linear mixed models (GLMMs). The specific GLMM for a dependent variable with three or more categories is the multinomial logit random effects model. For these models, the marginal distribution of the response does not have a closed form solution and hence numerical integration must be used to obtain maximum likelihood estimates for the model parameters. Techniques for implementing the numerical integration are available but are computationally intensive requiring a large amount of computer processing time that increases with the number of clusters (or individuals) in the data and are not always readily accessible to the practitioner in standard software. For the purposes of analysing categorical response data from a longitudinal social survey, there is clearly a need to evaluate the existing procedures for estimating multinomial logit random effects model in terms of accuracy, efficiency and computing time. The computational time will have significant implications as to the preferred approach by researchers. In this paper we evaluate statistical software procedures that utilise adaptive Gaussian quadrature and MCMC methods, with specific application to modeling employment status of women using a GLMM, over three waves of the HILDA survey.
Resumo:
Numerous studies find that monetary models of exchange rates cannot beat a random walk model. Such a finding, however, is not surprising given that such models are built upon money demand functions and traditional money demand functions appear to have broken down in many developed countries. In this article, we investigate whether using a more stable underlying money demand function results in improvements in forecasts of monetary models of exchange rates. More specifically, we use a sweep-adjusted measure of US monetary aggregate M1 which has been shown to have a more stable money demand function than the official M1 measure. The results suggest that the monetary models of exchange rates contain information about future movements of exchange rates, but the success of such models depends on the stability of money demand functions and the specifications of the models.
Resumo:
The principled statistical application of Gaussian random field models used in geostatistics has historically been limited to data sets of a small size. This limitation is imposed by the requirement to store and invert the covariance matrix of all the samples to obtain a predictive distribution at unsampled locations, or to use likelihood-based covariance estimation. Various ad hoc approaches to solve this problem have been adopted, such as selecting a neighborhood region and/or a small number of observations to use in the kriging process, but these have no sound theoretical basis and it is unclear what information is being lost. In this article, we present a Bayesian method for estimating the posterior mean and covariance structures of a Gaussian random field using a sequential estimation algorithm. By imposing sparsity in a well-defined framework, the algorithm retains a subset of “basis vectors” that best represent the “true” posterior Gaussian random field model in the relative entropy sense. This allows a principled treatment of Gaussian random field models on very large data sets. The method is particularly appropriate when the Gaussian random field model is regarded as a latent variable model, which may be nonlinearly related to the observations. We show the application of the sequential, sparse Bayesian estimation in Gaussian random field models and discuss its merits and drawbacks.
Resumo:
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation.
Resumo:
BACKGROUND: The behavioral and psychological symptoms related to dementia (BPSD) are difficult to manage and are associated with adverse patient outcomes. OBJECTIVE: To systematically analyze the data on memantine in the treatment of BPSD. METHODS: We searched MEDLINE, EMBASE, Pharm-line, the Cochrane Centre Collaboration, www.clinicaltrials.gov, www.controlled-trials.com, and PsycINFO (1966-July 2007). We contacted manufacturers and scrutinized the reference sections of articles identified in our search for further references, including conference proceedings. Two researchers (IM and CF) independently reviewed all studies identified by the search strategy. We included 6 randomized, parallel-group, double-blind studies that rated BPSD with the Neuropsychiatric Inventory (NPI) in our meta-analysis. Patients had probable Alzheimer's disease and received treatment with memantine for at least one month. Overall efficacy of memantine on the NPI was established with a t-test for the average difference between means across studies, using a random effects model. RESULTS: Five of the 6 studies identified had NPI outcome data. In these 5 studies, 868 patients were treated with memantine and 882 patients were treated with placebo. Patients on memantine improved by 1.99 on the NPI scale (95% Cl -0.08 to -3.91; p = 0.041) compared with the placebo group. CONCLUSIONS: Initial data appear to indicate that memantine decreases NPI scores and may have a role in managing BPSD. However, there are a number of limitations with the current data; the effect size was relatively small, and whether memantine produces significant clinical benefit is not clear.
Resumo:
In order to generate sales promotion response predictions, marketing analysts estimate demand models using either disaggregated (consumer-level) or aggregated (store-level) scanner data. Comparison of predictions from these demand models is complicated by the fact that models may accommodate different forms of consumer heterogeneity depending on the level of data aggregation. This study shows via simulation that demand models with various heterogeneity specifications do not produce more accurate sales response predictions than a homogeneous demand model applied to store-level data, with one major exception: a random coefficients model designed to capture within-store heterogeneity using store-level data produced significantly more accurate sales response predictions (as well as better fit) compared to other model specifications. An empirical application to the paper towel product category adds additional insights. This article has supplementary material online.
Resumo:
Numerous studies find that monetary models of exchange rates cannot beat a random walk model. Such a finding, however, is not surprising given that such models are built upon money demand functions and traditional money demand functions appear to have broken down in many developed countries. In this paper we investigate whether using a more stable underlying money demand function results in improvements in forecasts of monetary models of exchange rates. More specifically, we use a sweepadjusted measure of US monetary aggregate M1 which has been shown to have a more stable money demand function than the official M1 measure. The results suggest that the monetary models of exchange rates contain information about future movements of exchange rates but the success of such models depends on the stability of money demand functions and the specifications of the models.
Resumo:
Assessing factors that predict new product success (NPS) holds critical importance for companies, as research shows that despite considerable new product investment, success rates are generally below 25%. Over the decades, meta-analytical attempts have been made to summarize empirical findings on NPS factors. However, market environment changes such as increased global competition, as well as methodological advancements in meta-analytical research, present a timely opportunity to augment their results. Hence, a key objective of this research is to provide an updated and extended meta-analytic investigation of the factors affecting NPS. Using Henard and Szymanski's meta-analysis as the most comprehensive recent summary of empirical findings, this study updates their findings by analyzing articles published from 1999 through 2011, the period following the original meta-analysis. Based on 233 empirical studies (from 204 manuscripts) on NPS, with a total 2618 effect sizes, this study also takes advantage of more recent methodological developments by re-calculating effects of the meta-analysis employing a random effects model. The study's scope broadens by including overlooked but important additional variables, notably “country culture,” and discusses substantive differences between the updated meta-analysis and its predecessor. Results reveal generally weaker effect sizes than those reported by Henard and Szymanski in 2001, and provide evolutionary evidence of decreased effects of common success factors over time. Moreover, culture emerges as an important moderating factor, weakening effect sizes for individualistic countries and strengthening effects for risk-averse countries, highlighting the importance of further investigating culture's role in product innovation studies, and of tracking changes of success factors of product innovations. Finally, a sharp increase since 1999 in studies investigating product and process characteristics identifies a significant shift in research interest in new product development success factors. The finding that the importance of success factors generally declines over time calls for new theoretical approaches to better capture the nature of new product development (NPD) success factors. One might speculate that the potential to create competitive advantages through an understanding of NPD success factors is reduced as knowledge of these factors becomes more widespread among managers. Results also imply that managers attempting to improve success rates of NPDs need to consider national culture as this factor exhibits a strong moderating effect: Working in varied cultural contexts will result in differing antecedents of successful new product ventures.
Resumo:
We use non-parametric procedures to identify breaks in the underlying series of UK household sector money demand functions. Money demand functions are estimated using cointegration techniques and by employing both the Simple Sum and Divisia measures of money. P-star models are also estimated for out-of-sample inflation forecasting. Our findings suggest that the presence of breaks affects both the estimation of cointegrated money demand functions and the inflation forecasts. P-star forecast models based on Divisia measures appear more accurate at longer horizons and the majority of models with fundamentals perform better than a random walk model.
Resumo:
This paper compares the experience of forecasting the UK government bond yield curve before and after the dramatic lowering of short-term interest rates from October 2008. Out-of-sample forecasts for 1, 6 and 12 months are generated from each of a dynamic Nelson-Siegel model, autoregressive models for both yields and the principal components extracted from those yields, a slope regression and a random walk model. At short forecasting horizons, there is little difference in the performance of the models both prior to and after 2008. However, for medium- to longer-term horizons, the slope regression provided the best forecasts prior to 2008, while the recent experience of near-zero short interest rates coincides with a period of forecasting superiority for the autoregressive and dynamic Nelson-Siegel models. © 2014 John Wiley & Sons, Ltd.
Resumo:
The research presented in this thesis was developed as part of DIBANET, an EC funded project aiming to develop an energetically self-sustainable process for the production of diesel miscible biofuels (i.e. ethyl levulinate) via acid hydrolysis of selected biomass feedstocks. Three thermal conversion technologies, pyrolysis, gasification and combustion, were evaluated in the present work with the aim of recovering the energy stored in the acid hydrolysis solid residue (AHR). Mainly consisting of lignin and humins, the AHR can contain up to 80% of the energy in the original feedstock. Pyrolysis of AHR proved unsatisfactory, so attention focussed on gasification and combustion with the aim of producing heat and/or power to supply the energy demanded by the ethyl levulinate production process. A thermal processing rig consisting on a Laminar Entrained Flow Reactor (LEFR) equipped with solid and liquid collection and online gas analysis systems was designed and built to explore pyrolysis, gasification and air-blown combustion of AHR. Maximum liquid yield for pyrolysis of AHR was 30wt% with volatile conversion of 80%. Gas yield for AHR gasification was 78wt%, with 8wt% tar yields and conversion of volatiles close to 100%. 90wt% of the AHR was transformed into gas by combustion, with volatile conversions above 90%. 5volO2%-95vol%N2 gasification resulted in a nitrogen diluted, low heating value gas (2MJ/m3). Steam and oxygen-blown gasification of AHR were additionally investigated in a batch gasifier at KTH in Sweden. Steam promoted the formation of hydrogen (25vol%) and methane (14vol%) improving the gas heating value to 10MJ/m3, below the typical for steam gasification due to equipment limitations. Arrhenius kinetic parameters were calculated using data collected with the LEFR to provide reaction rate information for process design and optimisation. Activation energy (EA) and pre-exponential factor (ko in s-1) for pyrolysis (EA=80kJ/mol, lnko=14), gasification (EA=69kJ/mol, lnko=13) and combustion (EA=42kJ/mol, lnko=8) were calculated after linearly fitting the data using the random pore model. Kinetic parameters for pyrolysis and combustion were also determined by dynamic thermogravimetric analysis (TGA), including studies of the original biomass feedstocks for comparison. Results obtained by differential and integral isoconversional methods for activation energy determination were compared. Activation energy calculated by the Vyazovkin method was 103-204kJ/mol for pyrolysis of untreated feedstocks and 185-387kJ/mol for AHRs. Combustion activation energy was 138-163kJ/mol for biomass and 119-158 for AHRs. The non-linear least squares method was used to determine reaction model and pre-exponential factor. Pyrolysis and combustion of biomass were best modelled by a combination of third order reaction and 3 dimensional diffusion models, while AHR decomposed following the third order reaction for pyrolysis and the 3 dimensional diffusion for combustion.
Resumo:
2000 Mathematics Subject Classification: 62P10, 92D10, 92D30, 62F03
Resumo:
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regressiontechniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a nave random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists' long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. ^ Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. ^ Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. ^ Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption. ^
Resumo:
Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption.