963 resultados para RAMAN SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stein Collection in the British Library contains the Diamond Sutra, the world's oldest, dated, printed document. The paper of the Diamond Sutra and other documents from the Stein collection is believed to be dyed yellow by a natural extract, called huangbo, from the bark of Phellodendron amurense, which contains three major yellow chromophores: berberine, palmatine, and jatrorrhizine, Conservation of these documents requires definite information on the chemical composition of the dyes but no suitable, completely noninvasive analytical method is known. Here we report resonance Raman studies of a series of prate dyes, of plant materials and extracts, and of dyed ancient and modern paper samples. Resonance Raman spectroscopy is used to enhance the spectra of the dyes over the signals from the paper matrixes in which they are held. The samples an give resonance Raman spectra which are dominated by intense fluorescence, but by using SSRS (subtracted shifted Raman spectroscopy) we have obtained reliable spectra of the pure dyes, native bark from the Phellodendron amurense, modern paper dyed with huangbo extracted from this bark, and ancient paper samples. For both ancient paper samples whose pigment bands were detected, the relative intensities of the bands due to berberine and palmatine suggest that the ancient paper is richer in berberine than its modern counterpart, This is the first nondestructive in situ method for detection of these pigments in manuscripts, and as such has considerable potential benefit for the treatment of irreplaceable documents that are believed to be dyed with huangbo but documents on which conservation work cannot proceed without definite identification of the chemical compounds that they contain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method of obtaining high-quality Raman spectra of luminescent samples was tested using cyclohexane solutions which had been treated with a fluorescent dye. The method involves removing the fixed pattern irregularity found in the spectra taken with CCD detectors by subtracting spectra taken at several different, closely spaced spectrometer positions. It is conceptually similar to SERDS (shifted excitation Raman difference spectroscopy) but has the distinct experimental advantage that it does not require a tunable laser source. The subtracted spectra obtained as the raw data are converted into a more recognisable and conventional form by iterative fitting of appropriate double Lorentzian functions whose peak parameters are then used to 'reconstruct' a conventional representation of the spectrum. Importantly, it is shown that the degree of uncertainty in the resultant 'reconstructed' spectra can be gauged reliably by comparing reconstructed spectra obtained at two different spectrometer shifts (delta and 2 delta), The method was illustrated and validated using a solvent (cyclohexane) the spectrum of which is well known and which contains both regions with complex overlapping bands and regions with isolated bands, Possible sources of error are discussed and it is shown that, provided the degree of uncertainty in the data is correctly characterised, it is completely valid to draw conclusions about the spectra of the sample on the basis of the reconstructed data. The acronym SSRS (subtracted shifted Raman spectroscopy; pronounced scissors) is proposed for this method, to distinguish it from the SERDS technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibrational Raman spectroscopy is now widely recognized as a useful technique for chemical analysis. It has become increasingly popular for the characterization of stable species since the technology which underpins Raman measurements has matured. Time-resolved Raman spectroscopy has also become established as an excellent method for the characterization of transient chemical species but it is not so widely applied. However, the technical advances which have reduced the cost and increased the reliability of conventional: Raman systems can also be exploited in studies of transient species. In some cases it is just as straightforward to record the Raman-spectra of a short-lived transient species as it is to monitor a more stable sample. This raises the possibility of routinely adding time-domain Raman measurements to more conventional Raman techniques, increasing the selectivity of the analysis while retaining its ability to provide spectral information which is characteristic of the species under investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy of the lowest energy excited state of the 4,4'-bipyridyl ligand-bridged complex, [(CO)(5)W(L)W(CO5] (1), and Raman spectroscopy of electrochemically reduced 1, both give bands characteristic of the the L(.-) species. This confirms that the ligand L is negatively charged in the lowest energy exicited state which is therefore metal-ligand charge transfer (MLCT) in character. Raman spectra of the radical anion of 1 excited in the far red (800 nm) exhibited a band near 2050 cm(-1) due to a vco symmetric CO stretching mode, compared to the corresponding band at 2070 cm(-1) in the spectrum of the parent, uncharged complex. The lower vco in the reduced complex supports the recent finding by time-resolved IR spectroscopy of a similar frequency decrease for nu(CO) in the longest lived (MLCT) excited state of 1 which was attributed to electron/hole localisation in this state on the IR time scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonance Raman spectra of the T-1 excited states of Zn and free-base tetra-4-sulfonatophenylporphyrin (TPPS) have been recorded at room temperature in aqueous solution using two-colour time-resolved methods. The spectra of both sulfonated molecules are very similar to their tetraphenylporphyrin (TPP) analogues, which have been recorded in THF solution using the same pump-probe conditions, but they have higher signal-to-noise ratios because interference from strong solvent bands is reduced. Although two different T-1 spectra of Zn(TPP) have been reported these spectra differ slightly from each other and from the spectrum reported here, which has band positions very close (+/-6 cm(-1)) to those of Zn(TPPS). The high S/N ratios obtainable for the water-soluble porphyrins have allowed reliable polarization data to be recorded for their S-0 and T-1 states. This data set allows a realistic comparison of the changes in bonding associated with excitation of both free-base and Zn tetraarylporphyrins to the T-1 state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-color time-resolved resonance Raman spectroscopy has been used to probe the lowest excited singlet (S1) and triplet (T1) states of free-base meso-tetraphenylporphyrin and meso-tetrakis(4-sulphonatophenyl)porphyrin in solution at room temperature. The spectra were recorded using 532-nm excitation pulses and time-delayed probe pulses (DELTAT = 0-30 ns, 447 and 460 nm) near lambda(max) of the S1 and T1 states. Significant shifts in frequency of the porphyrin core vibrations were observed upon excitation to either the S1 or T1 state. Several of the strongest polarized bands in the spectra of both excited states, including nu1, nu2, nu4, nu6, and phi4, are assigned, and the information they give on the differences in electron distribution in the ground, S1, and T1 states is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy is a noninvasive, nondestructive tool for capturing multiplexed biochemical information across diverse molecular species including proteins, lipids, DNA, and mineralizations. Based on light scattering from molecules, cells, and tissues, it is possible to detect molecular fingerprints and discriminate between subtly different members of each biochemical class. Raman spectroscopy is ideal for detecting perturbations from the expected molecular structure such as those occurring during senescence and the modification of long-lived proteins by metabolic intermediates as we age. Here, we describe the sample preparation, data acquisition, signal processing, data analysis and interpretation involved in using Raman spectroscopy for detecting age-related protein modifications in complex biological tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates a model system for potential pharmaceutical materials in fluidised bed processes. In particular, this study proposes a novel use of Raman spectroscopy, which allows in situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra from specific volumes of space. The work shows that Raman spectroscopy can be used to provide 3D maps of the concentration and chemical structure of the particles in a fluidised bed within a relatively short (120 s) time window. At the most basic level the technique measures particle density via the intensity of the Raman spectra, however this could be used. More importantly the data are also rich in spectroscopic information on the chemical structure of the fluidised particles which is useful either for monitoring a given granulation process or more generally for the analysis of the dynamics of the airflow if the data were incorporated into an appropriate model. The technique has the potential to give detailed in situ information on how the structure and composition of the granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlabelled single- and double-stranded DNA (ssDNA and dsDNA, respectively) has been detected at concentrations =10-9?M by surface-enhanced Raman spectroscopy. Under appropriate conditions the sequences spontaneously adsorbed to the surface of both Ag and Au colloids through their nucleobases; this allowed highly reproducible spectra with good signal-to-noise ratios to be recorded on completely unmodified samples. This eliminated the need to promote absorption by introducing external linkers, such as thiols. The spectra of model ssDNA sequences contained bands of all the bases present and showed systematic changes when the overall base composition was altered. Initial tests also showed that small but reproducible changes could be detected between oligonucleotides with the same bases arranged in a different order. The spectra of five ssDNA sequences that correspond to different strains of the Escherichia coli bacterium were found to be sufficiently composition-dependent so that they could be differentiated without the need for any advanced multivariate data analysis techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To separately investigate the impact of simulated age-related lens yellowing, transparency loss and refractive error on measurements of macular pigment (MP) using resonance Raman spectroscopy.