975 resultados para RADIOLIGAND RECEPTOR BINDING ASSAYS
Resumo:
Radiolabeled antagonists of specific peptide receptors identify a higher number of receptor binding sites than agonists and may thus be preferable for in vivo tumor targeting. In this study, two novel radioiodinated 1,4-benzodiazepines, (S)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (9) and (R)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (7), were developed. They were characterized in vitro as high affinity selective antagonists at cholecystokinin types 1 and 2 (CCK(1) and CCK(2)) receptors using receptor binding, calcium mobilization, and internalization studies. Their binding to human tumor tissues was assessed with in vitro receptor autoradiography and compared with an established peptidic CCK agonist radioligand. The (125)I-labeled CCK(1) receptor-selective compound 9 often revealed a substantially higher amount of CCK(1) receptor binding sites in tumors than the agonist (125)I-CCK. Conversely, the radioiodinated CCK(2) receptor-selective compound 7 showed generally weaker tumor binding than (125)I-CCK. In conclusion, compound 9 is an excellent radioiodinated nonpeptidic antagonist ligand for direct and selective labeling of CCK(1) receptors in vitro. Moreover, it represents a suitable candidate to test antagonist binding to CCK(1) receptor-expressing tumors in vivo.
Resumo:
Paramyxovirus cell entry is controlled by the concerted action of two viral envelope glycoproteins, the fusion (F) and the receptor-binding (H) proteins, which together with a cell surface receptor mediate plasma membrane fusion activity. The paramyxovirus F protein belongs to class I viral fusion proteins which typically contain two heptad repeat regions (HR). Particular to paramyxovirus F proteins is a long intervening sequence (IS) located between both HR domains. To investigate the role of the IS domain in regulating fusogenicity, we mutated in the canine distemper virus (CDV) F protein IS domain a highly conserved leucine residue (L372) previously reported to cause a hyperfusogenic phenotype. Beside one F mutant, which elicited significant defects in processing, transport competence, and fusogenicity, all remaining mutants were characterized by enhanced fusion activity despite normal or slightly impaired processing and cell surface targeting. Using anti-CDV-F monoclonal antibodies, modified conformational F states were detected in F mutants compared to the parental protein. Despite these structural differences, coimmunoprecipitation assays did not reveal any drastic modulation in F/H avidity of interaction. However, we found that F mutants had significantly enhanced fusogenicity at low temperature only, suggesting that they folded into conformations requiring less energy to activate fusion. Together, these data provide strong biochemical and functional evidence that the conserved leucine 372 at the base of the HRA coiled-coil of F(wt) controls the stabilization of the prefusogenic state, restraining the conformational switch and thereby preventing extensive cell-cell fusion activity.
Resumo:
The aim of this research was to characterize the differentiative requirements of human CD8$\sp{+}$ suppressor lymphocytes. We investigated the role of monocytes in cellular interactions required for generation of T suppressor cells (Ts) in pokeweed mitogen (PWM) stimulated peripheral blood mononuclear cells (PBMC). We observed that the functional activity of CD8$\sp{+}$ T cells was dependent on the concentration of monocytes in the inductive cultures; at concentrations normally present in peripheral blood, PWM stimulation induced potent suppressor activity, whereas under conditions of moderate monocyte depletion the same phenotypic subset of CD8$\sp{+}$ cells enhanced responses. We also demonstrated that differentiation of CD8$\sp{+}$CD28$\sp{-}$ suppressor cells could be mediated by soluble products elaborated by monocytes and CD4$\sp{+}$ cells, identified as PGE$\sb2$ and IFN$\gamma$ respectively. These two signals were required sequentially to cause Ts induction. That is PGE$\sb2$ was required initially, followed by an IFN$\gamma$-dependent differentiative step. We also explored the possibility that PGE$\sb2$ caused modulation of the IFN$\gamma$ receptor number and/or affinity on CD8$\sp{+}$ cells, which might render these cells responsive to the differentiative effect of the IFN$\gamma$-signal. Using radiolabelled $\sp{125}$I-IFN$\gamma$, direct binding assays demonstrated that 10$\sp{-8}$M PGE$\sb2$ selectively increased the number of receptors on the CD8$\sp{+}$ cells. In contrast CD4$\sp{+}$ cells treated similarly exhibited no significant change in their number of IFN$\gamma$ receptors. These results, thus, suggest a relationship between PGE$\sb2$ induced expression of IFN$\gamma$ receptor and the initial requirement for PGE$\sb2$ in IFN$\gamma$-dependent differentiation of Ts cells. Together, our results suggest a crucial role for PGE$\sb2$ and IFN$\gamma$ in regulation of the immune response. Furthermore, such detailed definition of the differentiative requirements for CD8$\sp{+}$ suppressor cells should provide new insight into fundamental mechanisms of immunoregulation. ^
Resumo:
Previous studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. To investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were selected to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay showed that initial binding between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAG) with heparin-like properties, i.e., heparan sulfate and dermatan sulfate. Furthermore, a single class of highly specific, protease-sensitive heparin/heparan sulfate binding sites exist on the surface of RL95 cells. Three heparin binding, tryptic peptide fragments were isolated from RL95 cell surfaces and their amino termini partially sequenced. Reverse transcription-polymerase chain reaction (RT-PCR) generated 1 to 4 PCR products per tryptic peptide. Northern blot analysis of RNA from RL95 cells using one of these RT-PCR products identified a 1.2 Kb mRNA species (p24). The amino acid sequence predicted from the cDNA sequence contains a putative heparin-binding domain. A synthetic peptide representing this putative heparin binding domain was used to generate a rabbit polyclonal antibody (anti-p24). Indirect immunofluorescence studies on RL95 and JAR cells as well as binding studies of anti-p24 to intact RL95 cells demonstrate that p24 is distributed on the cell surface. Western blots of RL95 membrane preparations identify a 24 kDa protein (p24) highly enriched in the 100,000 g pellet plasma membrane-enriched fraction. p24 eluted from membranes with 0.8 M NaCl, but not 0.6 M NaCl, suggesting that it is a peripheral membrane component. Solubilized p24 binds heparin by heparin affinity chromatography and $\sp{125}$I-heparin binding assays. Furthermore, indirect immunofluorescence studies indicate that cytotrophoblast of floating and attached villi of the human fetal-maternal interface are recognized by anti-p24. The study also indicates that the HSPG, perlecan, accumulates where chorionic villi are attached to uterine stroma and where p24-expressing cytotrophoblast penetrate the stroma. Collectively, these data indicate that p24 is a cell surface membrane-associated heparin/heparan sulfate binding protein found in cytotrophoblast, but not many other cell types of the fetal-maternal interface. Furthermore, p24 colocalizes with HSPGs in regions of cytotrophoblast invasion. These observations are consistent with a role for HSPGs and HSPG binding proteins in human trophoblast-uterine cell interactions. ^
Resumo:
Fusion of nonmetastatic murine melanoma K1735 C19H cells with metastatic human melanoma A375 C15N cells resulted in a hybrid (termed H7) which was highly metastatic in a nude mouse model. The H7 hybrid retained chromosome 17 as the sole intact human chromosome in the cell. A lung bioassay showed that the K1735 C19H cells were present in the lungs of nude mice with s.c. tumors, yet at 6-weeks after tumor resection, no cells remained in the lung and therefore did not form lung metastases. Examination of various phenotypic properties such as in vivo and in vitro growth demonstrated that phenotypically the H7 hybrid was most like the K1735 C19H cell line except for its metastatic ability. In contrast the H7 hybrid cells containing single or multiple copies of human chromosome 17 with a point mutation at codon 249 (arg-gly) of the p53 gene, readily formed lung metastases. A plasmid containing the human p53 from the H7 hybrid and four other contructs with mutations at codon 143 (val-arg), 175 (arg-his), 249 (arg-ser) and 273 (arg-his) were transfected into K1735 C19H cells. K1735 C19H cells expressing human p53 genes with mutations at codons 249, both the arg-ser mutation and the mutation from the H7 hybrid and 273 produced significantly more lung metastases.^ In vitro assays demonstrated that responses to various cytotoxic and DNA damaging agents varied with the presence of mutant p53 and with the type of agent used. When cultured in mouse lung-conditioned medium, the K1735 C19H cell line was growth-inhibited, while cells containing a mutant human p53 (either on the whole chromosome 17, as in the H7 hybrid cells or from a stably transfected construct) were growth stimulated. Western blot analysis of lung-conditioned media derived from either 6-month or 15-month old mice has detected high levels of soluble Fas ligand in the medium from older animals. Comparison of the levels of Fas receptor on the K1735 C19H cell line and the H7 hybrid were almost identical, but 50% of the K1735 C19H cells were killed in the presence of anti-Fas antibody as opposed to 7% of the H7 hybrid cells. The growth-inhibitory effects of the lung-conditioned medium on the K1735 C19H cells were abrogated by coculture with Fas-Fc, which competes with the Fas ligand for receptor binding. Growth-inhibition of the K1735 C19H was 54% when cultured in 60 $\mu$g/0.2 ml lung-conditioned medium and a control Fc, with only 9% inhibition in 60 $\mu$g/0.2 ml lung-conditioned medium and Fas-Fc. Growth of the H7 cells and K1735 C19H cells transfected with various mutant human p53 genes were unchanged by the presence of either the control Fc or the Fas-Fc. This indicates that the presence of human chromosome 17, and mutant p53 in part protects the cells from Fas:Fas ligand induced apoptosis, and allows the growth of lung metastases. ^
Resumo:
Neonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding. Calves were fed colostrum (CF; n=7) or a milk-based formula (FF; n=7) with similar nutrient content up to d 4 of life. Blood samples were taken daily before feeding and 2h after feeding on d 4 of life to measure metabolites and hormones related to energy metabolism in blood plasma. Liver tissue was obtained 2 h after feeding on d 4 to measure hepatic fat content and binding capacity of AR and GR. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α₁- and β₂-AR and [(3)H]-dexamethasone for determination of GR in liver. Additional liver samples were taken to measure mRNA abundance of AR and GR, and of key enzymes related to hepatic glucose and lipid metabolism. Plasma concentrations of albumin, triacylglycerides, insulin-like growth factor I, leptin, and thyroid hormones changed until d 4 and all these variables except leptin and thyroid hormones responded to feed intake on d 4. Diet effects were determined for albumin, insulin-like growth factor I, leptin, and thyroid hormones. Binding capacity for GR was greater and for α₁-AR tended to be greater in CF than in FF calves. Binding affinities were in the same range for each receptor type. Gene expression of α₁-AR (ADRA1) tended to be lower in CF than FF calves. Binding capacity of GR was related to parameters of glucose and lipid metabolism, whereas β₂-AR binding capacity was negatively associated with glucose metabolism. In conclusion, our results indicate a dependence of GR and α₁-AR on milk feeding immediately after birth and point to an involvement of hepatic GR and AR in postnatal adaptation of glucose and lipid metabolism in calves.
Resumo:
Metallothionein (MT) represents a family of low molecular weight, cysteine-rich proteins that play a number of roles in cellular homeostasis. MT is synthesized as a consequence of a variety of cellular stressors, including exposure to toxic metals, increased temperature, tissue wounding, as well as inflammatory and tumorigenic agents. This protein has been found in both intracellular compartments and extracellular spaces, and its function may depend in part on its location. Extracellular MT is able to redistribute heavy metals between tissues, act as a powerful antioxidant, affect cell proliferation, and cause the suppression of T-dependent humoral immunity. The nature of the interaction of MT with the plasma cell membrane has yet to be characterized, despite many observations that there is a significant pool of extracellular MT, and that this extracellular MT will bind to leukocyte plasma membranes. In light of studies that MT can be detected on the surface of leukocytes from animals immunized in the presence of adjuvant, and that an MT specific receptor has been found on the surface of astrocytes, we have investigated the nature of the potential MT-specific surface receptor-binding site(s) on the plasma membrane of leukocytes. The identification of MT-receptors will allow for the characterization of the mechanism MT uses for immunomodulation, for the manipulation of MT in its immunomodulatory role, and for the identification of patients at higher risk for those potentially harmful immunomodulatory effects.
Resumo:
Exogenous ligands that bind to the estrogen receptor (ER) exhibit unique pharmacologies distinct from that observed with the endogenous hormone, 17β-estradiol (ED. Differential activity among ER ligands has been observed at the level of receptor binding, promoter interaction and transcriptional activation. Furthermore, xenoestrogens can display tissue-specific agonist activity on the cellular level, functioning as an agonist in one tissue and as an antagonist in another. That the same ligand, functioning through the same receptor, can produce differing agonist responses on the cellular level indicates that there are tissue-specific determinants of agonist activity. In these studies critical molecular determinants of agonist activity were characterized for several cell types. In the normal and neoplastic myometrium a proliferative response was dependent upon activation of AF2 of the ER, functioning as a determinant of agonism in this cell type. Progesterone receptor (PR) ligands transdominantly suppressed ER-mediated transcription and proliferation in uterine leiomyoma cells, indicating that ER/PR cross-talk can modulate agonist activity in a myometrial cell background. In the breast, the agonist response to ER ligands was investigated by employing a functional genomics approach to generate gene expression profiles. Treatment of breast cancer cells with the selective estrogen receptor modulator tamoxifen largely recapitulated the expression profile induced by treatment with the agonist E2, despite the well-characterized antiproliferative effects produced by tamoxifen in this cell type. While the expression of many genes involved in regulating cell cycle progression, including fos, myc, cdc25a, stk15 and cyclin A, were induced by both E2 and tamoxifen in breast cells, treatment with the agonist E2 specifically induced the expression of cyclin D1, fra-1 , and uracil DNA glycosylase. These results suggest that the inability of tamoxifen to transactivate expression of only a few key genes, functioning as cellular gatekeepers, prevent tamoxifen-treated breast cells from entering the cell cycle. Thus, the expression of these agonist-specific marker genes is a potential determinant of agonist activity at the cellular level in the breast. Collectively, studies in the breast and uterine myometrium have identified several mechanisms whereby ER ligands modulate ER-mediated signaling and provide insights into the biology of tissue-specific agonist activity in hormone-responsive tissues. ^
Resumo:
Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.
Resumo:
The LAZ3/BCL6 (lymphoma-associated zinc finger 3/B cell lymphomas 6) gene frequently is altered in non-Hodgkin lymphomas. It encodes a sequence-specific DNA binding transcriptional repressor that contains a conserved N-terminal domain, termed BTB/POZ (bric-à-brac tramtrack broad complex/pox viruses and zinc fingers). Using a yeast two-hybrid screen, we show here that the LAZ3/BCL6 BTB/POZ domain interacts with the SMRT (silencing mediator of retinoid and thyroid receptor) protein. SMRT originally was identified as a corepressor of unliganded retinoic acid and thyroid receptors and forms a repressive complex with a mammalian homolog of the yeast transcriptional repressor SIN3 and the HDAC-1 histone deacetylase. Protein binding assays demonstrate that the LAZ3/BCL6 BTB/POZ domain directly interacts with SMRT in vitro. Furthermore, DNA-bound LAZ3/BCL6 recruits SMRT in vivo, and both overexpressed proteins completely colocalize in nuclear dots. Finally, overexpression of SMRT enhances the LAZ3/BCL6-mediated repression. These results define SMRT as a corepressor of LAZ3/BCL6 and suggest that LAZ3/BCL6 and nuclear hormone receptors repress transcription through shared mechanisms involving SMRT recruitment and histone deacetylation.
Resumo:
Paraneoplastic opsoclonus myoclonus ataxia (POMA) is a neurologic disorder thought to be mediated by an autoimmune attack against onconeural disease antigens that are expressed by gynecologic or lung tumors and by neurons. One POMA disease antigen, termed Nova-1, has been identified as a neuron-specific KH-type RNA-binding protein. Nova-1 expression is restricted to specific regions of the central nervous system, primarily the hindbrain and ventral spinal cord, which correlate with the predominantly motor symptoms in POMA. However, POMA antisera recognize antigens that are widely expressed in both caudal and rostral regions of the central nervous system, and some patients develop cognitive symptoms. We have used POMA antisera to clone a cDNA encoding a second POMA disease antigen termed Nova-2. Nova-2 is closely related to Nova-1, and is expressed at high levels in neurons during development and in adulthood, and at lower levels in the adult lung. In the postnatal mouse brain, Nova-2 is expressed in a pattern that is largely reciprocal with Nova-1, including high levels of Nova-2 expression in the neocortex and hippocampus. Functional characterization of Nova-2 in RNA selection and nitrocellulose filter-binding assays reveals that Nova-2 binds RNA with high affinity and with sequence specificity that differs from Nova-1. Our results demonstrate that the immune response in POMA targets a family of highly related sequence-specific neuronal RNA-binding proteins. The expression pattern of the Nova-2 protein is likely to underlie the development of cognitive deficits in some POMA patients.
Resumo:
Using truncated forms of recombinant yeast karyopherins α and β in in vitro binding assays, we mapped the regions of karyopherin α that bind to karyopherin β and the regions of karyopherin β that interact with karyopherin α and with Ran-GTP. Karyopherin α’s binding region for karyopherin β was localized to its N-terminal domain, which contains several clusters of basic residues, whereas karyopherin β’s binding region for karyopherin α was localized to an internal region containing two clusters of acidic residues. Karyopherin β’s binding region for Ran-GTP overlaps with that for karyopherin α and comprises at least one of the two acidic clusters required for karyopherin α binding in addition to further downstream determinants not required for karyopherin α binding. Overexpression in yeast of fragments containing either karyopherin β’s binding region for α and Ran-GTP or karyopherin α’s binding region for β resulted in sequestration of most of the cytosolic karyopherin α or karyopherin β, respectively, in complexes containing the truncated proteins. As these binding region-containing fragments lack other domains required for function of the corresponding protein, the overexpression of either fragment also inhibited in vivo nuclear import of a model reporter protein as well as cell growth.
Resumo:
The insulin-like growth factor (IGF) binding proteins (IGFBPs) modulate the actions of the insulin-like growth factors in endocrine, paracrine, and autocrine settings. Additionally, some IGFBPs appear to exhibit biological effects that are IGF independent. The six high-affinity IGFBPs that have been characterized to date exhibit 40–60% amino acid sequence identity overall, with the most conserved sequences in their NH2 and COOH termini. We have recently demonstrated that the product of the mac25/IGFBP-7 gene, which shows significant conservation in the NH2 terminus, including an “IGFBP motif” (GCGCCXXC), exhibits low-affinity IGF binding. The closely related mammalian genes connective tissue growth factor (CTGF) gene, nov, and cyr61 encode secreted proteins that also contain the conserved sequences and IGFBP motifs in their NH2 termini. To ascertain if these genes, along with mac25/IGFBP-7, encode a family of low-affinity IGFBPs, we assessed the IGF binding characteristics of recombinant human CTGF (rhCTGF). The ability of baculovirus-synthesized rhCTGF to bind IGFs was demonstrated by Western ligand blotting, affinity cross-linking, and competitive affinity binding assays using 125I-labeled IGF-I or IGF-II and unlabeled IGFs. CTGF, like mac25/IGFBP-7, specifically binds IGFs, although with relatively low affinity. On the basis of these data, we propose that CTGF represents another member of the IGFBP family (IGFBP-8) and that the CTGF gene, mac25/IGFBP-7, nov, and cyr61 are members of a family of low-affinity IGFBP genes. These genes, along with those encoding the high-affinity IGFBPs 1–6, together constitute an IGFBP superfamily whose products function in IGF-dependent or IGF-independent modes to regulate normal and neoplastic cell growth.
Resumo:
This study investigated whether endothelin-1 (ET-1), a potent vasoconstrictor, which also stimulates cell proliferation, contributes to endothelial dysfunction and atherosclerosis. Apolipoprotein E (apoE)-deficient mice and C57BL/6 control mice were treated with a Western-type diet to accelerate atherosclerosis with or without ETA receptor antagonist LU135252 (50 mg/kg/d) for 30 wk. Systolic blood pressure, plasma lipid profile, and plasma nitrate levels were determined. In the aorta, NO-mediated endothelium-dependent relaxation, atheroma formation, ET receptor-binding capacity, and vascular ET-1 protein content were assessed. In apoE-deficient but not C57BL/6 mice, severe atherosclerosis developed within 30 wk. Aortic ET-1 protein content (P < 0.0001) and binding capacity for ETA receptors was increased as compared with C57BL/6 mice. In contrast, NO-mediated, endothelium-dependent relaxation to acetylcholine (56 ± 3 vs. 99 ± 2%, P < 0.0001) and plasma nitrate were reduced (57.9 ± 4 vs. 93 ± 10 μmol/liter, P < 0.01). Treatment with the ETA receptor antagonist LU135252 for 30 wk had no effect on the lipid profile or systolic blood pressure in apoE-deficient mice, but increased NO-mediated endothelium-dependent relaxation (from 56 ± 3 to 93 ± 2%, P < 0.0001 vs. untreated) as well as circulating nitrate levels (from 57.9 ± 4 to 80 ± 8.3 μmol/liter, P < 0.05). Chronic ETA receptor blockade reduced elevated tissue ET-1 levels comparable with those found in C57BL/6 mice and inhibited atherosclerosis in the aorta by 31% without affecting plaque morphology or ET receptor-binding capacity. Thus, chronic ETA receptor blockade normalizes NO-mediated endothelial dysfunction and reduces atheroma formation independent of plasma cholesterol and blood pressure in a mouse model of human atherosclerosis. ETA receptor blockade may have therapeutic potential in patients with atherosclerosis.
Resumo:
Myomesin is a 185-kDa protein located in the M-band of striated muscle where it interacts with myosin and titin, possibly connecting thick filaments with the third filament system. By using expression of epitope-tagged myomesin fragments in cultured cardiomyocytes and biochemical binding assays, we could demonstrate that the M-band targeting activity and the myosin-binding site are located in different domains of the molecule. An N-terminal immunoglobulin-like domain is sufficient for targeting to the M-band, but solid-phase overlay assays between individual N-terminal domains and the thick filament protein myosin revealed that the unique head domain contains the myosin-binding site. When expressed in cardiomyocytes, the head domains of rat and chicken myomesin showed species-specific differences in their incorporation pattern. The head domain of rat myomesin localized to a central area within the A-band, whereas the head domain of chicken myomesin was diffusely distributed in the cytoplasm. We therefore conclude that the head domain of myomesin binds to myosin but that this affinity is not sufficient for the restriction of the domain to the M-band in vivo. Instead, the neighboring immunoglobulin-like domain is essential for the precise incorporation of myomesin into the M-band, possibly because of interaction with a yet unknown protein of the sarcomere.