975 resultados para Quark stars


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication we present results of a study of chiral symmetry in quark matter using an effective Coulomb gauge QCD Hamiltonian. QCD in Coulomb gauge is convenient for a variational approach based on a quasiparticle picture for the transverse gluons, in which a confining Coulomb potential arises naturally. We show that such an effective Hamiltonian predicts chiral restoration at too low quark densities. Possible reasons for such deficiency are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The t (t) over bar production cross section and top quark mass are measured in proton-proton collisions at root s = 7 TeV in a data sample corresponding to an integrated luminosity of 36 pb(-1) collected by the CMS experiment. The measurements are performed in events with two leptons (electrons or muons) in the final state. Results of the cross section measurement in events with and without b-quark identification are obtained and combined. The measured value is sigma(tt) - 168 +/- 18 (stat:) +/- 14 (syst:) +/- 7 (lumi:) pb, consistent with predictions from the standard model. The top quark mass m(top) is reconstructed with two different methods, a full kinematic analysis and a matrix weighting technique. The combination yields a measurement of m(top) = 175.5 +/- 4.6 (stat:) +/- 4: 6 (syst:) GeV/c(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We briefly discuss four different possible types of transitions from quark to hadronic matter and their characteristic signatures in terms of correlations. We also highlight the effects arising from mass modification of hadrons in hot and dense hadronic matter, as well as their quantum statistical consequences: the appearance of squeezed quantum states and the associated experimental signatures, i.e., the back-to-back correlations of particle-antiparticle pairs. We briefly review the theoretical results of these squeezed quanta, generated by in-medium modified masses, starting from the first indication of the existence of surprising particle-antiparticle correlations, and ending by considering the effects of chiral dynamics on these correlation patterns. Nevertheless, a prerequisite for such a signature is the experimental verification of its observability. Therefore, the experimental observation of back-to-back correlations in high energy heavy ion reactions would be a unique signature, proving the existence of in-medium mass modification of hadronic states. on the other hand, their disappearance at some threshold centrality or collision energy would indicate that the hadron formation mechanism would have qualitatively changed: asymptotic hadrons above such a threshold are not formed from medium modified hadrons anymore, but rather by new degrees of freedom characterizing the medium. Furthermore, the disappearance of the squeezed BBC could also serve as a signature of a sudden, non-equilibrium hadronization scenario from a supercooled quark-gluon plasma phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exchange of gluons between heavy quarks produced in e+e- interactions results in an enhancement of their production near threshold. We study QCD threshold effects in gammagamma collisions. The results are relevant to heavy quark production by beamstrahlung and laser backscattering in future linear collider experiments. Detailed predictions for top-, bottom-, and charm-quark production are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photospheres of stars hosting planets have larger metallicity than stars lacking planets. This could be the result of a metallic star contamination produced by the bombarding of hydrogen-deficient solid bodies. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30 Myr. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planet's eccentricity (e(p)) and time-scale of migration (tau) on the rate of infalling planetesimals. For very fast migrations (tau= 10(2) and 10(3) yr) there is no capture in mean motion resonances, independently of the value of e(p). Then, due to the planet's migration the planetesimals suffer close approaches with the planet and more than 80 per cent of them are ejected from the system. For slow migrations (tau= 10(5)and 10(6) yr) the percentage of collisions with the planet decreases with the increase of the planet's eccentricity. For e(p) = 0 and 0.1 most of the planetesimals were captured in the 2:1 resonance and more than 65 per cent of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 M-Jupiter planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiter exoplanet metallicities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the capability of an egamma collider to unravel the hadronic content of the photon. The experimental problem for probing the gluonic structure of the photon is that small-x triggers overwhelmingly select soft photons rather than soft gluons in hard photons. We show that the problem can be finessed in experiments where laser back-scattering is used to prepare a source of very hard photons. We illustrate their power for studying the parton distributions of the photon and, specifically, for separating the quark and gluon components in events where dijets, jet-gamma pairs, and heavy quark pairs are produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass relations for hadrons containing a single heavy quark (charm or beauty) are studied from the viewpoint of a quark model with broken SU(8) symmetry, developed by Hendry and Lichtenberg some time ago, in comparison to that of the heavy quark effective theory. The interplay of the two approaches is explored and spectroscopic consequences derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)