977 resultados para QA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of a C60 monolayer on a graphite substrate was modelled via molecular dynamics simulation covering a significant period of 160 picoseconds. The final configuration of C60s agrees closely with that observed in a scanning tunnelling microscopy (STM) experiment. Clusters of adsorbed molecules were then selected and their STM-like images were computed via the Keldysh Green function method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of the atomistic modelling of the behaviour of nano-scale structures and processes via molecular dynamics (MD) simulation method of a canonical ensemble is presented. Three areas of application in condensed matter physics are considered. We focus on the adhesive and indentation properties of the solid surfaces in nano-contacts, the nucleation and growth of nano-phase metallic and semi-conducting atomic and molecular films on supporting substrates, and the nano- and multi-scale crack propagation properties of metallic lattices. A set of simulations selected from these fields are discussed, together with a brief introduction to the methodology of the MD simulation. The pertinent inter-atomic potentials that model the energetics of the metallic and semi-conducting systems are also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale molecular dynamics simulations have been performed on canonical ensembles to model the adhesion and indentation characteristics of 3-D metallic nano-scale junctions in tip-substrate geometries, and the crack propagation in 2-D metallic lattices. It is shown that irreversible flows in nano-volumes of materials control the behaviour of the 3-D nano-contacts, and that local diffusional flow constitutes the atomistic mechanism underlying these plastic flows. These simulations show that the force of adhesion in metallic nano-contacts is reduced when adsorbate monolayers are present at the metal—metal junctions. Our results are in agreement with the conclusions of very accurate point-contact experiments carried out in this field. Our fracture simulations reveal that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures, the nucleation of dislocations is shown to cause a brittle-to-ductile transition. Limiting crack propagation velocities are computed for different strain rates and a dynamic instability is shown to control the crack movement beyond this limiting velocity, in line with the recent experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface tension induced flow is implemented into a numerical modelling framework and validated for a number of test cases. Finite volume unstructured mesh techniques are used to discretize the mass, momentum and energy conservation equations in three dimensions. An explicit approach is used to include the effect of surface tension forces on the flow profile and final shape of a liquid domain. Validation of this approach is made against both analytical and experimental data. Finally, the method is used to model the wetting balance test for solder alloy material, where model predictions are used to gain a greater insight into this process. Copyright © 2000 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation relates to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specifically formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. PACS numbers: 02.60.Cb, 07.05.Tp, 68.55.-a, 81.05.Tp

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the early stages in the adsorption process of C60 molecules on a highly oriented pyrolitic graphite (HOPG) substrate. C60 powder was thermally evaporated in UHV of 10−8 Pa conditions onto a freshly cleaved HOPG surface. We did not observe individual fullerenes on the substrate for the case of short deposition times and low evaporation rates. However, small islands of C60 molecules with an fcc structure could be observed when the deposition rate was about 0.2 nm/min and the total thickness was above 1 nm. The islands did not grow in the vicinity of the HOPG steps. The typical lateral dimensions of these islands were of the order of a few hundred square nanometers, having thickness of up to five monolayers. We modified the shapes and positions of these islands by the STM tip, using a small (less than 1 V) bias voltage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Probe-based scanning microscopes, such as the STM and the AFM, are used to obtain the topographical and electronic structure maps of material surfaces, and to modify their morphologies on nanoscopic scales. They have generated new areas of research in condensed matter physics and materials science. We will review some examples from the fields of experimental nano-mechanics, nano-electronics and nano-magnetism. These now form the basis of the emerging field of Nano-technology. A parallel development has been brought about in the field of Computational Nano-science, using quantum-mechanical techniques and computer-based numerical modelling, such as the Molecular Dynamics (MD) simulation method. We will report on the simulation of nucleation and growth of nano-phase films on supporting substrates. Furthermore, a theoretical modelling of the formation of STM images of metallic clusters on metallic substrates will also be discussed within the non-equilibrium Keldysh Green function method to study the effects of coherent tunnelling through different atomic orbitals in a tip-sample geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three paradigms for distributed-memory parallel computation that free the application programmer from the details of message passing are compared for an archetypal structured scientific computation -- a nonlinear, structured-grid partial differential equation boundary value problem -- using the same algorithm on the same hardware. All of the paradigms -- parallel languages represented by the Portland Group's HPF, (semi-)automated serial-to-parallel source-to-source translation represented by CAP-Tools from the University of Greenwich, and parallel libraries represented by Argonne's PETSc -- are found to be easy to use for this problem class, and all are reasonably effective in exploiting concurrency after a short learning curve. The level of involvement required by the application programmer under any paradigm includes specification of the data partitioning, corresponding to a geometrically simple decomposition of the domain of the PDE. Programming in SPMD style for the PETSc library requires writing only the routines that discretize the PDE and its Jacobian, managing subdomain-to-processor mappings (affine global-to-local index mappings), and interfacing to library solver routines. Programming for HPF requires a complete sequential implementation of the same algorithm as a starting point, introduction of concurrency through subdomain blocking (a task similar to the index mapping), and modest experimentation with rewriting loops to elucidate to the compiler the latent concurrency. Programming with CAPTools involves feeding the same sequential implementation to the CAPTools interactive parallelization system, and guiding the source-to-source code transformation by responding to various queries about quantities knowable only at runtime. Results representative of "the state of the practice" for a scaled sequence of structured grid problems are given on three of the most important contemporary high-performance platforms: the IBM SP, the SGI Origin 2000, and the CRAYY T3E.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on practical experience using the Oxford BSP Library to parallelize a large electromagnetic code, the British Aerospace finite-difference time-domain code EMMA T:FD3D. The Oxford BS Library is one of the first realizations of the Bulk Synchronous Parallel computational model to be targeted at numerically intensive scientific (typically Fortran) computing. The BAe EMMA code is one of the first large-scale applications to be parallelized using this library, and it is an important demonstration of the cost effectiveness of the BSP approach. We illustrate how BSP cost-modelling techniques can be used to predict and optimize performance for single-source programs across different parallel platforms. We provide predicted and observed performance figures for an industrial-strength, single-source parallel code for a variety of real parallel architectures: shared memory multiprocessors, workstation clusters and massively parallel platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the results obtained from the parallelisation of some 3D industrial electromagnetic Finite Element codes within the ESPRIT Europort 2 project PARTEL are presented. The basic guidelines for the parallelisation procedure, based on the Bulk Synchronous Parallel approach, are presented and the encouraging results obtained in terms of speed-up on some selected test cases of practical design significance are outlined and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monodentate and bidentate pyridyl phosphines, PR3 and R2P(CH2)2PR2, where R=3- or 4-pyridyl can be prepared in high yields by treatment of butyllithium/TMEDA/3- or 4-bromopyridine with PCl3 or Cl2P(CH2)2PCl2 at low temperature. 1,2-Bis(di-2-pyridylphosphino)ethane is conveniently synthesised by an alternative route involving reaction of 1,2-dibromoethane with lithium di-2-pyridylphosphide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-Lagrangian finite volume scheme for solving viscoelastic flow problems is presented. A staggered grid arrangement is used in which the dependent variables are located at different mesh points in the computational domain. The convection terms in the momentum and constitutive equations are treated using a semi-Lagrangian approach in which particles on a regular grid are traced backwards over a single time-step. The method is applied to the 4 : 1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions. The development of vortex behaviour with increasing values of We is analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The liquid metal flow in induction crucible models is known to be unstable, turbulent and difficult to predict in the regime of medium frequencies when the electromagnetic skin-layer is of considerable extent. We present long term turbulent flow measurements by a permanent magnet incorporated potential difference velocity probe in a cylindrical container filled with eutectic melt In-Ga-Sn. The parallel numerical simulation of the long time scale development of the turbulent average flow is presented. The numerical flow model uses an implicit pseudo-spectral code and k-w turbulence model, which was recently developed for the transitional flow modelling. The results compare reasonably to the experiment and demonstrate the time development of the turbulent flow field and the turbulence energy.