941 resultados para Q switched lasers
Resumo:
Exact formulas for the effective eigenvalue characterizing the initial decay of intensity correlation functions are given in terms of stationary moments of the intensity. Spontaneous emission noise and nonwhite pump noise are considered. Our results are discussed in connection with earlier calculations, simulations, and experimental results for single-mode dye lasers, two-mode inhomogeneously broadened lasers, and two-mode dye ring lasers. The effective eigenvalue is seen to depend sensitively on noise characteristics and symmetry properties of the system. In particular, the effective eigenvalue associated with cross correlations of two-mode lasers is seen to vanish in the absence of pump noise as a consequence of detailed balance. In the presence of pump noise, the vanishing of this eigenvalue requires equal pump parameters for the two modes and statistical independence of spontaneous emission noise acting on each mode.
Resumo:
We propose an equation to calculate the intensity correlation function of a dye-laser model with a pump parameter subject to finite-bandwidth fluctuations. The equation is valid, in the weak-noise limit, for all times. It incorporates novel non-Markovian features. Results are given for the short-time behavior of the correlation function. It exhibits a characteristic initial plateau. Our findings are supported by a numerical simulation of the model.
Resumo:
Ce texte relate l'étude de validation d'une adaptation francophone du Q-Sort d'attachement de Waters et Deane (cette adaptation est présentée dans ce même numéro). Le Q-Sort rempli par les parents ne paraît pas tenir ses promesses de méthode alternative à la Situation étrange pour évaluer la qualité de la relation d'attachement. Cependant, lorsqu'il est rempli par un observateur extérieur, il semble mieux refléter la catégorisation des comportements dans la Situation étrange. Au travers du Q-Sort, les parents semblent décrire davantage le tempérament de l'enfant que la qualité de la relation d'attachement.
Resumo:
We present analytical calculations of the turn-on-time probability distribution of intensity-modulated lasers under resonant weak optical feedback. Under resonant conditions, the external cavity round-trip time is taken to be equal to the modulation period. The probability distribution of the solitary laser results are modified to give reduced values of the mean turn-on-time and its variance. Numerical simulations have been carried out showing good agreement with the analytical results.
Resumo:
The performance of a device based on modified injection-locking techniques is studied by means of numerical simulations. The device incorporates master and slave configurations, each one with a DFB laser and an electroabsortion modulator (EAM). This arrangement allows the generation of high peak power, narrow optical pulses according to a periodic or pseudorandom bit stream provided by a current signal generator. The device is able to considerably increase the modulation bandwidth of free-running gain-switched semiconductor lasers using multiplexing in the time domain. Opportunities for integration in small packages or single chips are discussed.
Resumo:
The intensity correlation functions C(t) for the colored-gain-noise model of dye lasers are analyzed and compared with those for the loss-noise model. For correlation times ¿ larger than the deterministic relaxation time td, we show with the use of the adiabatic approximation that C(t) values coincide for both models. For small correlation times we use a method that provides explicit expressions of non-Markovian correlation functions, approximating simultaneously short- and long-time behaviors. Comparison with numerical simulations shows excellent results simultaneously for short- and long-time regimes. It is found that, when the correlation time of the noise increases, differences between the gain- and loss-noise models tend to disappear. The decay of C(t) for both models can be described by a time scale that approaches the deterministic relaxation time. However, in contrast with the loss-noise model, a secondary time scale remains for large times for the gain-noise model, which could allow one to distinguish between both models.