958 resultados para Puppets and puppet-plays
Resumo:
Microglial cells are the resident immune cells of central nervous system (CNS) and the major players in neuroinflammation. These cells are also responsible for surveilling the neuronal microenvironment, and upon injury to the CNS they change their morphology and molecular profile and become activated. Activated status is associated with microglia proliferation, migration to injury foci, increased phagocytic capacity, production and release of reactive oxygen species (ROS), cytokines (pro- or anti-inflammatory) and reactive nitrogen species. Microglia activation is crucial for tissue repair in the healthy brain. However, their chronic activation or deregulation might contribute for the pathophysiology of neurodegenerative diseases. A better understanding of the mechanisms underlying microglial cell activation is important for defining targets and develop appropriate therapeutic strategies to control the chronic activation of microglia. It has been observed an increase in profilin (Pfn) mRNA in microglial cells in the rat hippocampus after unilateral ablation of its major extrinsic input, the entorhinal cortex. This observation suggested that Pfn might be involved in microglia activation. Pfn1 is an actin binding protein that controls assembly and disassembly of actin filaments and is important for several cellular processes, including, motility, cell proliferation and survival. Here, we studied the role of Pfn1 in microglial cell function. For that, we used primary cortical microglial cell cultures and microglial cell lines in which we knocked down Pfn1 expression and assessed the activation status of microglia, based on classical activation markers, such as: phagocytosis, glutamate release, reactive oxygen species (ROS), pro- and anti-inflammatory cytokines. We demonstrated that Pfn1 (i) is more active in hypoxia-challenged microglia, (ii) modulates microglia pro- and anti-inflammatory signatures and (iii) plays a critical role in ROS generation in microglia. Altogether, we conclude that Pfn1 is a key protein for microglia homeostasis, playing an essential role in their activation, regardless the polarization into a pro or anti-inflammatory signature.
Resumo:
Internationale Jugendbegegnungen in Ländern der Entwicklungszusammenarbeit ermöglichen Teilnehmenden ein erfahrungsbasiertes statt theoretisch vermitteltes Bild des jeweiligen Landes/Kontinents. Basierend auf Daten einer qualitativen Forschungsarbeit zu internationalen Jugendbegegnungen im Nord-Süd-Kontext wird das Afrikabild einer deutschen Jugendgruppe nach einem dreiwöchigen Aufenthalt in Ruanda beschrieben: Afrikaner sind (finanziell) von den Industriestaaten abhängig. Trotz ihrer Armut sind sie zufrieden und es herrscht Gemütlichkeit. Sie singen und tanzen und der Glaube spielt eine wichtige Rolle. Abschließend wird diskutiert, wie Begegnungen konzipiert werden sollten, damit solche defizitorientierten und Armut romantisierenden Bilder vermieden werden können. (DIPF/Orig.)
Resumo:
With the increasing complexity of today's software, the software development process is becoming highly time and resource consuming. The increasing number of software configurations, input parameters, usage scenarios, supporting platforms, external dependencies, and versions plays an important role in expanding the costs of maintaining and repairing unforeseeable software faults. To repair software faults, developers spend considerable time in identifying the scenarios leading to those faults and root-causing the problems. While software debugging remains largely manual, it is not the case with software testing and verification. The goal of this research is to improve the software development process in general, and software debugging process in particular, by devising techniques and methods for automated software debugging, which leverage the advances in automatic test case generation and replay. In this research, novel algorithms are devised to discover faulty execution paths in programs by utilizing already existing software test cases, which can be either automatically or manually generated. The execution traces, or alternatively, the sequence covers of the failing test cases are extracted. Afterwards, commonalities between these test case sequence covers are extracted, processed, analyzed, and then presented to the developers in the form of subsequences that may be causing the fault. The hypothesis is that code sequences that are shared between a number of faulty test cases for the same reason resemble the faulty execution path, and hence, the search space for the faulty execution path can be narrowed down by using a large number of test cases. To achieve this goal, an efficient algorithm is implemented for finding common subsequences among a set of code sequence covers. Optimization techniques are devised to generate shorter and more logical sequence covers, and to select subsequences with high likelihood of containing the root cause among the set of all possible common subsequences. A hybrid static/dynamic analysis approach is designed to trace back the common subsequences from the end to the root cause. A debugging tool is created to enable developers to use the approach, and integrate it with an existing Integrated Development Environment. The tool is also integrated with the environment's program editors so that developers can benefit from both the tool suggestions, and their source code counterparts. Finally, a comparison between the developed approach and the state-of-the-art techniques shows that developers need only to inspect a small number of lines in order to find the root cause of the fault. Furthermore, experimental evaluation shows that the algorithm optimizations lead to better results in terms of both the algorithm running time and the output subsequence length.
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Paula Frassinetti para obtenção de grau de Mestre em Educação Pré-Escolar
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Paula Frassinetti para obtenção do grau de mestre em educação pré-escolar
Resumo:
This thesis describes the modification of the commercial TFC-S nanofiltration membrane with shape-persistent dendritic architectures. Amphiphilic aromatic polyamide dendrimers (G1-G3) are synthesized via a divergent approach and used for membrane modification by direct percolation. The permeate samples collected from the percolation experiments are analyzed by UV-Vis spectroscopy to instantly monitor the influence of dendrimer generations on percolation behaviors and new active layer formation. The membrane structures are further characterized by Rutherford backscattering spectrometry (RBS) and atomic force microscopy (AFM) techniques, suggesting a low-level accumulation of dendrimers inside the TFC-S NF membranes and subsequent formation of an additional aramide dendrimer active layer. Thus, all the modified TFC-S membranes have a double active layer structure. A PES-PVA film is used as a control membrane showing that structural compatibility between the dendrimer and supports plays an important role in the membrane modification process. The performance of modified TFC-S membrane is evaluated on the basis of rejection abilities of a variety of water contaminants having a range of sizes and chemistry. As the water flux is inversely proportional to the thickness of the active layer, we optimize the amount of dendrimers deposited for specific contaminants to improve the solute rejection while maintaining high water flux.
Resumo:
Students of mumming and guising plays – the seasonal verse dramas performed for over 200 years throughout much of England, Scotland, and northern Ireland – have suffered from having too much information to work with. The first part of this poster presentation outlines and illustrates the situation. There are thousands of places where the plays are known to have been performed, and hundreds of texts have been collected. Furthermore, the plays show some tantalising similarities while simultaneously exhibiting the wide range of variation one would expect from orally transmitted dialogue. Until recently, scholars openly admitted to not knowing where to start with such a flood of material, to the extent that some dismissed the texts altogether as unimportant and irrelevant, focussing instead on the "actions". Fortunately, the introduction of computers has managed to break the impasse and is aiding the intellectual process. Part two shows a case study for one of the tools on the Master Mummers website - the Folk Play Scripts Explorer – which is based on a large database of digitised texts and a typology for individual lines. This allows researchers to search for lines, explore textual variants, and map their geographical distribution. This is yielding some interesting surprises. Seemingly trivial variations often turn out to have discrete distribution patterns, while it transpires that certain "ubiquitous" lines have restricted geographical ranges. Thus, the Scripts Explorer is providing novel insights into how the plays evolved and spread.
Resumo:
The Hungarian Revolution is often analysed in a national context or from the angle of Hungarian-Soviet relations. From this perspective, the Eastern European satellites seem mere puppets and the Soviet bloc a monolith. Archival evidence nevertheless shows that the Kremlin actually attempted to build a new kind of international relations after Stalin’s death in 1953, in which the Eastern European leaders would gain more scope for manoeuvre. This attempt at liberalisation even facilitated the uprisings in Hungary in 1956. Avoiding a teleological approach to the Hungarian Revolution, this article argues that the Soviet invasion was neither inevitable, nor wholly unilateral. Khrushchev even sought to legitimise the invasion in bilateral and multilateral consultations. There was a mutual interest in sacrificing Hungary’s sovereignty to safeguard the communist monopoly on power. This multilateralisation of Soviet bloc security is an important explanatory factor in an analysis of the Revolution and its repercussions in Eastern Europe.
Resumo:
The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.
Resumo:
The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.
Resumo:
Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.
Resumo:
Deficiencies in iodine levels have been shown to seriously affect a child’s intellectual development and learning capacity.1 In South-East Asia, iodine deficiency remains a major public health concern. Approximately 30% of the region’s population of 503.6 million have insufficient iodine intake, and only 61% of households have access to iodized salt.1 For this reason, it is necessary to initiate effective, community-based health promotion activities that are targeted toward populations of various ages. A puppet show is one imaginative and entertaining method of health education that has been advocated for use in communicating positive health behaviours to children.2e5 The authors undertook a literature review and found no studies assessing the effectiveness of a puppet show to teach an iodine education programme...
Resumo:
Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.
Resumo:
Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFN gamma and TNF alpha levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.