926 resultados para Psychomotor stimulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: In this study we investigated differences in the spatial recruitment of motor units (MUs) in the quadriceps when electrical stimulation is applied over the quadriceps belly versus the femoral nerve. METHODS: M-waves and mechanical twitches were evoked using over-the-quadriceps and femoral nerve stimulation of gradually increasing intensity from 22 young, healthy subjects. Spatial recruitment was investigated using recruitment curves of M-waves recorded from the vastus medialis (VM) and vastus lateralis (VL) and of twitches recorded from the quadriceps. RESULTS: At maximal stimulation intensity (Imax), no differences were found between nerve and over-the-quadriceps stimulation. At submaximal intensities, VL M-wave amplitude was higher for over-the-quadriceps stimulation at 40% Imax, and peak twitch force was greater for nerve stimulation at 60% and 80% Imax. CONCLUSIONS: For the VM, MU spatial recruitment during nerve and over-the-quadriceps stimulation of increasing intensity occurred in a similar manner, whereas significant differences were observed for the VL. Muscle Nerve, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME Les follicules des vibrisses des rongeurs sont représentés sous la forme d'une carte topographique dans le cortex à tonneaux. Lorsque un groupe de vibrisses est coupé pendant plusieurs jours chez un rongeur adulte, en laissant les autres vibrisses intactes, le champ réceptif des neurones du cortex à tonneaux est modifié, ce qui démontre que les cartes corticales sont plastiques. Dans notre étude, une expérience sensorielle a été induite chez une souris adulte se comportant librement en stimulant chroniquement une de ses vibrisses pendant 24h. Par une analyse des potentiels de champ locaux, nous démontrons que les caractéristiques spatiotemporelles du flux d'excitation évoqué par la vibrisse principale (VP) dans la colonne corticale correspondante à la vibrisse stimulée n'est pas altéré. Par contre, l'enregistrement des potentiels d'actions d'un total de 1041 neurones à travers le cortex à tonneaux révèlent plusieurs modifications de l'activité neuronale. L'activité spontanée ainsi que la réponse évoquée par la VP sont déprimées dans la colonne corticale stimulée (nombre moyen de potentiels d'action évoqués par la VP diminue de 25 % et 36% dans la couche IV et les couches II&III). La réponse des neurones à la vibrisse stimulée diminue également dans les colonnes corticales adjacentes, «non-stimulées». La dépression de l'activité spontanée et de la réponse à la VP est localisée à la colonne corticale stimulée. Dans le tonneau stimulé, la première partie de la réponse à la VP n'est pas affaiblie, démontrant que la dépression de la réponse n'est pas due à un phénomène de plasticité sous-corticale ou thalamocorticale. La stimulation chronique d'une vibrisse entraîne une augmentation du nombre de synapses GABAergiques dans la couche IV du tonneau correspondant (Knott et al, 2002). Dès lors, nos résultats suggèrent qu'une augmentation de l'inhibition dans le tonneau stimulé serait à l'origine de la diminution des potentiels d'action évoqués par la vibrisse stimulée et en conséquence de l'amplitude du flux d'excitation vers les couches II&III puis vers les colonnes corticales adjacentes. Toutes les réponses des neurones du tonneau stimulé ne sont pas déprimées. Les réponses des neurones à la vibrisse voisine caudale à VP diminuent dans la couche IV (42%) et dans les couches II&III (52%) mais pas les réponses aux 7 autres vibrisses voisines. Les entrées synaptiques en provenance de la vibrisse caudale pourraient avoir été spécifiquement déprimées en raison d'une décorrélation prolongée entre l'activité évoquée dans les chemins sensoriels relatifs à la vibrisse stimulée et à la vibrisse caudale, spécificité qui découlerait du fait que, parmi les vibrisses voisines à la VP, la vibrisse caudale génère les réponses les plus fortes dans la colonne corticale. Quatre jours après l'arrêt de la stimulation, l'activité neuronale n'est plus déprimée; au contraire, nous observons une potentiation des réponses à la VP dans la couche IV de la colonne corticale stimulée. De plus, nous montrons que l'expression des protéines GLT-1 et GLAST, deux transporteurs astrocytaires du glutamate, est augmentée de ~2.5 fois dans la colonne corticale stimulée, indiquant l'existence d'une «plasticité gliale» et suggérant que les cellules gliales participent activement à l'adaptation du cerveau à l'expérience. ABSTRACT In the barrel cortex, mystacial whisker follicles are represented in the form of a topographie map. The selective removal of a set of whiskers while sparing others for several days in an adult rodent alters receptive field of barrel cortex neurons, demonstrating experience-dependent plasticity of cortical maps. Here sensory experience was altered by chronic stimulation of a whisker for a 24h period in a freely behaving adult mouse. By means of an evoked local field potential analysis, we show that chronic stimulation does not alter the flow of excitation evoked by the principal whisker (PW) in the stimulated barrel column. However, the recording of neuronal firing from a total of 1041 single units throughout the barrel cortex reveals several changes in neuronal activity. Immediately after chronic stimulation, spontaneous activity as well as PW-responses are depressed in the stimulated barrel column (mean number of spikes per PW-deflection decreases by 25% and 36% in layer IV and layers II&III, respectively). Neuronal responses towards the chronically stimulated whisker are also significantly depressed in layers II&III of the adjacent "non-stimulated" barrel' columns. The depression of both spontaneous activity and PW-responses are restricted to the stimulated ban-el column. The earliest time epoch of the PW-response in the stimulated barrel is not depressed, demonstrating that the decrease of cortical responses is not due to subcortical or thalamocortical plasticity. The depression of PW-response in the stimulated barrel correlates with an increase in the number of GABAergic synapses in layer IV (Knott et al., 2002). Therefore, our results suggest that an increase in inhibition within the stimulated barrel may reduce its excitatory output and accordingly the flow of excitation towards layers and the subsequent horizontal spread into adjacent barrel columns. Not all responses of neurons in the stimulated barrel are depressed. Neuronal responses towards the caudal in-row whisker decrease by 42% in layer IV and 52% in layers MM but responses to the other 7 immediate surround whiskers (SWs) are not affected. The synaptic inputs from the SW that elicit the strongest responses in the stimulated barrel may have been specifically depressed following a prolonged period of diminished coherence between neuronal activity evoked in the pathways from the chronically stimulated whisker and from its surrounding in-row whisker. Four days after the cessation of the stimulation, depression of neuronal activity is no longer present; on the contrary, we observe a small but significant potentiation of PW-responses in layer IV of the stimulated barrel column. Moreover we show that the expression of astrocytic glutamate transporters GLT-1 and GLAST proteins were both upregulated by ~2.5 fold in the stimulated barrel column, which indicates that glial cells exhibit experience-dependent functional changes and could actively take part in the adaptation of the cerebral cortex to experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral consequences of a brain insult represent an interaction between the injury and the capacity of the rest of the brain to adapt to it. We provide experimental support for the notion that genetic factors play a critical role in such adaptation. We induced a controlled brain disruption using repetitive transcranial magnetic stimulation (rTMS) and show that APOE status determines its impact on distributed brain networks as assessed by functional MRI (fMRI).Twenty non-demented elders exhibiting mild memory dysfunction underwent two fMRI studies during face-name encoding tasks (before and after rTMS). Baseline task performance was associated with activation of a network of brain regions in prefrontal, parietal, medial temporal and visual associative areas. APOE ε4 bearers exhibited this pattern in two separate independent components, whereas ε4-non carriers presented a single partially overlapping network. Following rTMS all subjects showed slight ameliorations in memory performance, regardless of APOE status. However, after rTMS APOE ε4-carriers showed significant changes in brain network activation, expressing strikingly similar spatial configuration as the one observed in the non-carrier group prior to stimulation. Similarly, activity in areas of the default-mode network (DMN) was found in a single component among the ε4-non bearers, whereas among carriers it appeared disaggregated in three distinct spatiotemporal components that changed to an integrated single component after rTMS. Our findings demonstrate that genetic background play a fundamental role in the brain responses to focal insults, conditioning expression of distinct brain networks to sustain similar cognitive performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La stimulation cérébrale profonde (SCP) nécessite l'implantation chirurgicale d'un système comprenant électrodes cérébrales et boîtier(s) de stimulation. Les noyaux cérébraux visés par la méthodologie stéréotaxique d'implantation doivent être visualisés au mieux par une imagerie à haute résolution. La procédure chirurgicale d'implantation des électrodes se fait si possible en anesthésie locale pour faire des mesures électro-physiologiques et tester en peropératoire l'effet de la stimulation, afin d'optimiser la position de l'électrode définitive. Dans un deuxième temps, le ou les générateur(s) d'impulsions sont implantés en anesthésie générale. La SCP pour les mouvements anormaux a une très bonne efficacité et un risque de complications graves faible quoique non nul. Les complications liées au matériel sont les plus fréquentes. Deep brain stimulation (DBS) requires the surgical implantation of a system including brain electrodes and impulsion generator(s). The nuclei targeted by the stereotaxic implantation methodology have to be visualized at best by high resolution imaging. The surgical procedure for implanting the electrodes is performed if possible under local anaesthesia to make electro-physiological measurements and to test intra-operatively the effect of the stimulation, in order to optimize the position of the definitive electrode. In a second step, the impulsion generator(s) are implanted under general anaesthesia. DBS for movement disorders has a very good efficacy and a low albeit non-zero risk of serious complications. Complications related to the material are the most common.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: As it might lead to less discomfort, magnetic nerve stimulation (MNS) is increasingly used as an alternative to electrical stimulation methods. Yet, MNS and electrical nerve stimulation (ENS) and electrical muscle stimulation (EMS) have not been formally compared for the evaluation of plantar flexor neuromuscular function. METHODS: We quantified plantar flexor neuromuscular function with ENS, EMS and MNS in 10 volunteers in fresh and fatigued muscles. Central alterations were assessed through changes in voluntary activation level (VAL) and peripheral function through changes in M-wave, twitch and doublet (PS100) amplitudes. Discomfort associated with 100-Hz paired stimuli delivered with each method was evaluated on a 10-cm visual analog scale. RESULTS: VAL, agonist and antagonist M-wave amplitudes and PS100 were similar between the different methods in both fresh and fatigued states. Potentiated peak twitch was lower in EMS compared to ENS, whereas no difference was found between ENS and MNS for any parameter. Discomfort associated with MNS (1.5 ± 1.4 cm) was significantly less compared to ENS (5.5 ± 1.9 cm) and EMS (4.2 ± 2.6 cm) (p < 0.05). CONCLUSION: When PS100 is used to evaluate neuromuscular properties, MNS, EMS and ENS can be used interchangeably for plantar flexor neuromuscular function assessment as they provide similar evaluation of central and peripheral factors in unfatigued and fatigued states. Importantly, electrical current spread to antagonist muscles was similar between the three methods while discomfort from MNS was much less compared to ENS and EMS. MNS may be potentially employed to assess neuromuscular function of plantar flexor muscles in fragile populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: In contrast to conventional (CONV) neuromuscular electrical stimulation (NMES), the use of "wide-pulse, high-frequencies" (WPHF) can generate higher forces than expected by the direct activation of motor axons alone. We aimed at investigating the occurrence, magnitude, variability and underlying neuromuscular mechanisms of these "Extra Forces" (EF). METHODS: Electrically-evoked isometric plantar flexion force was recorded in 42 healthy subjects. Additionally, twitch potentiation, H-reflex and M-wave responses were assessed in 13 participants. CONV (25Hz, 0.05ms) and WPHF (100Hz, 1ms) NMES consisted of five stimulation trains (20s on-90s off). RESULTS: K-means clustering analysis disclosed a responder rate of almost 60%. Within this group of responders, force significantly increased from 4% to 16% of the maximal voluntary contraction force and H-reflexes were depressed after WPHF NMES. In contrast, non-responders showed neither EF nor H-reflex depression. Twitch potentiation and resting EMG data were similar between groups. Interestingly, a large inter- and intrasubject variability of EF was observed. CONCLUSION: The responder percentage was overestimated in previous studies. SIGNIFICANCE: This study proposes a novel methodological framework for unraveling the neurophysiological mechanisms involved in EF and provides further evidence for a central contribution to EF in responders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Deep brain stimulation (DBS) is recognized as an effective treatment for movement disorders. We recently changed our technique, limiting the number of brain penetrations to three per side. OBJECTIVES: The first aim was to evaluate the electrode precision on both sides of surgery since we implemented this surgical technique. The second aim was to analyse whether or not the electrode placement was improved with microrecording and macrostimulation. METHODS: We retrospectively reviewed operation protocols and MRIs of 30 patients who underwent bilateral DBS. For microrecording and macrostimulation, we used three parallel channels of the 'Ben Gun' centred on the MRI-planned target. Pre- and post-operative MRIs were merged. The distance between the planned target and the centre of the implanted electrode artefact was measured. RESULTS: There was no significant difference in targeting precision on both sides of surgery. There was more intra-operative adjustment of the second electrode positioning based on microrecording and macrostimulation, which allowed to significantly approach the MRI-planned target on the medial-lateral axis. CONCLUSION: There was more electrode adjustment needed on the second side, possibly in relation with brain shift. We thus suggest performing a single central track with electrophysiological and clinical assessment, with multidirectional exploration on demand for suboptimal clinical responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) can be used to explore the dynamical state of neuronal networks. In patients with epilepsy, TMS can induce epileptiform discharges (EDs) with a stochastic occurrence despite constant stimulation parameters. This observation raises the possibility that the pre-stimulation period contains multiple covert states of brain excitability some of which are associated with the generation of EDs. OBJECTIVE: To investigate whether the interictal period contains "high excitability" states that upon brain stimulation produce EDs and can be differentiated from "low excitability" states producing normal appearing TMS-EEG responses. METHODS: In a cohort of 25 patients with Genetic Generalized Epilepsies (GGE) we identified two subjects characterized by the intermittent development of TMS-induced EDs. The high-excitability in the pre-stimulation period was assessed using multiple measures of univariate time series analysis. Measures providing optimal discrimination were identified by feature selection techniques. The "high excitability" states emerged in multiple loci (indicating diffuse cortical hyperexcitability) and were clearly differentiated on the basis of 14 measures from "low excitability" states (accuracy = 0.7). CONCLUSION: In GGE, the interictal period contains multiple, quasi-stable covert states of excitability a class of which is associated with the generation of TMS-induced EDs. The relevance of these findings to theoretical models of ictogenesis is discussed.