946 resultados para Psychic transmission
Resumo:
Incident energy gets transmitted, reflected and absorbed across an interface in jointed rock mass leading to energy dissipation and alteration of waves. Wave velocities get attenuated during their propagation across joints and this behavior is studied using bender/extender element tests. The velocity attenuation and modulus reduction observed in experimental tests are modeled with three dimensional distinct element code and results are validated. Normal propagation of an incident shear wave through a jointed rock mass cause slip of the rock blocks if shear stress of wave exceeds the shear strength of the joint. As the properties of joint determine the transmission of energy across an interface, a parametric study is then conducted with the validated numerical model by varying the parameters that may determine the energy transmission across a joint using modified Miller's method. Results of the parametric study are analyzed and presented in the paper. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude approximate to e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.
Resumo:
Transmission loss (TL) of a simple expansion chamber (SEC) consists of periodic domes with sharp troughs. This limits practical application of the SEC in the variable-speed automobile exhaust systems. Three-fourths of the troughs of the SEC can be lifted by appropriate tuning of the extended inlet/outlet lengths. However, such mufflers suffer from high back pressure and generation of aerodynamic noise due to free shear layers at the area discontinuities. Therefore, a perforate bridge is made between the extended inlet and outlet. It is shown that the TL curve of a concentric tube resonator (CTR) can also be lifted in a similar way by proper tuning of the extended unperforated lengths. Differential lengths have to be used to correct the inlet/outlet lengths in order to account for the perforate inertance. The resonance peak frequencies calculated by means of the 1-D analysis are compared with those of the 3-D FEM, and appropriate differential lengths are calculated. It is shown how different geometric characteristics of the muffler and mean flow affect the differential lengths. A general correlation is obtained for the differential lengths by considering seven relevant geometric and environmental parameters in a comprehensive parametric study. The resulting expressions would help in design of extended-tube CTR for wide-band TL. (C) 2014 Institute of Noise Control Engineering.
Resumo:
Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.
Resumo:
In this letter, we propose a scheme to improve the secrecy rate of cooperative networks using Analog Network Coding (ANC). ANC mixes the signals in the air; the desired signal is then separated out, from the mixed signals, at the legitimate receiver using techniques like self interference subtraction and signal nulling, thereby achieving better secrecy rates. Assuming global channel state information, memoryless adversaries and the decode-and-forward strategy, we seek to maximize the average secrecy rate between the source and the destination, subject to an overall power budget. Then, exploiting the structure of the optimization problem, we compute its optimal solution. Finally, we use numerical evaluations to compare our scheme with the conventional approaches.
Resumo:
Ecoepidemiology is a well-developed branch of theoretical ecology, which explores interplay between the trophic interactions and the disease spread. In most ecoepidemiological models, however, the authors assume the predator to be a specialist, which consumes only a single prey species. In few existing papers, in which the predator was suggested to be a generalist, the alternative food supply was always considered to be constant. This is obviously a simplification of reality, since predators can often choose between a number of different prey. Consumption of these alternative prey can dramatically change their densities and strongly influence the model predictions. In this paper, we try to bridge the gap and explore a generic ecoepidemiological system with a generalist predator, where the densities of all prey are dynamical variables. The model consists of two prey species, one of which is subject to an infectious disease, and a predator, which consumes both prey species. We investigate two main scenarios of infection transmission mode: (i) the disease transmission rate is predator independent and (ii) the transmission rate is a function of predator density. For both scenarios we fulfil an extensive bifurcation analysis. We show that including a second dynamical prey in the system can drastically change the dynamics of the single prey case. In particular, the presence of a second prey impedes disease spread by decreasing the basic reproduction number and can result in a substantial drop of the disease prevalence. We demonstrate that with efficient consumption of the second prey species by the predator, the predator-dependent disease transmission can not destabilize interactions, as in the case with a specialist predator. Interestingly, even if the population of the second prey eventually vanishes and only one prey species finally remains, the system with two prey species may exhibit different properties to those of the single prey system.
Resumo:
In this paper, we consider spatial modulation (SM) operating in a frequency-selective single-carrier (SC) communication scenario and propose zero-padding instead of the cyclic-prefix considered in the existing literature. We show that the zero-padded single-carrier (ZP-SC) SM system offers full multipath diversity under maximum-likelihood (ML) detection, unlike the cyclic-prefix based SM system. Furthermore, we show that the order of ML detection complexity in our proposed ZP-SC SM system is independent of the frame length and depends only on the number of multipath links between the transmitter and the receiver. Thus, we show that the zero-padding applied in the SC SM system has two advantages over the cyclic prefix: 1) achieves full multipath diversity, and 2) imposes a relatively low ML detection complexity. Furthermore, we extend the partial interference cancellation receiver (PIC-R) proposed by Guo and Xia for the detection of space-time block codes (STBCs) in order to convert the ZP-SC system into a set of narrowband subsystems experiencing flat-fading. We show that full rank STBC transmissions over these subsystems achieves full transmit, receive as well as multipath diversity for the PIC-R. Furthermore, we show that the ZP-SC SM system achieves receive and multipath diversity for the PIC-R at a detection complexity order which is the same as that of the SM system in flat-fading scenario. Our simulation results demonstrate that the symbol error ratio performance of the proposed linear receiver for the ZP-SC SM system is significantly better than that of the SM in cyclic prefix based orthogonal frequency division multiplexing as well as of the SM in the cyclic-prefixed and zero-padded single carrier systems relying on zero-forcing/minimum mean-squared error equalizer based receivers.
Resumo:
UHV power transmission lines have high probability of shielding failure due to their higher height, larger exposure area and high operating voltage. Lightning upward leader inception and propagation is an integral part of lightning shielding failure analysis and need to be studied in detail. In this paper a model for lightning attachment has been proposed based on the present knowledge of lightning physics. Leader inception is modeled based on the corona charge present near the conductor region and the propagation model is based on the correlation between the lightning induced voltage on the conductor and the drop along the upward leader channel. The inception model developed is compared with previous inception models and the results obtained using the present and previous models are comparable. Lightning striking distances (final jump) for various return stroke current were computed for different conductor heights. The computed striking distance values showed good correlation with the values calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The model is applied to a 1200 kV AC power transmission line and inception of the upward leader is analyzed for this configuration.
Resumo:
The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual-and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections.
Resumo:
Campylobacter jejuni is one of the most common causes of acute enteritis in the developed world. The consumption of contaminated poultry, where C. jejuni is believed to be a commensal organism, is a major risk factor. However, the dynamics of this colonization process in commercially reared chickens is still poorly understood. Quantification of these dynamics of infection at an individual level is vital to understand transmission within populations and formulate new control strategies. There are multiple potential routes of introduction of C. jejuni into a commercial flock. Introduction is followed by a rapid increase in environmental levels of C. jejuni and the level of colonization of individual broilers. Recent experimental and epidemiological evidence suggest that the celerity of this process could be masking a complex pattern of colonization and extinction of bacterial strains within individual hosts. Despite the rapidity of colonization, experimental transmission studies exhibit a highly variable and unexplained delay time in the initial stages of the process. We review past models of transmission of C. jejuni in broilers and consider simple modifications, motivated by the plausible biological mechanisms of clearance and latency, which could account for this delay. We show how simple mathematical models can be used to guide the focus of experimental studies by providing testable predictions based on our hypotheses. We conclude by suggesting that competition experiments could be used to further understand the dynamics and mechanisms underlying the colonization process. The population models for such competition processes have been extensively studied in other ecological and evolutionary contexts. However, C. jejuni can potentially adapt phenotypically through phase variation in gene expression, leading to unification of ecological and evolutionary time-scales. For a theoretician, the colonization dynamics of C. jejuni offer an experimental system to explore these 'phylodynamics', the synthesis of population dynamics and evolutionary biology.
Resumo:
In this paper we consider the propagation of acoustic waves along a curved hollow or annular duct with lined walls. The curvature of the duct centreline and the wall radii vary slowly along the duct, allowing application of an asymptotic multiple scales analysis. This generalises Rienstra's analysis of a straight duct of varying cross-sectional radius. The result of the analysis is that the modal wavenumbers and mode shapes are determined locally as modes of a torus with the same local curvature, while the amplitude of the modes evolves as the mode propagates along the duct. The duct modes are found numerically at each axial location using a pseudo-spectral method. Unlike the case of a straight duct, there is a fundamental asymmetry between upstream and downstream propagating modes, with some mode shapes tending to be concentrated on either the inside or outside of the bend depending on the direction of propagation. The interaction between the presence of wall lining and curvature is investigated in particular; for instance, in a representative case it is found that the curvature causes the first few acoustic modes to be more heavily damped by the duct boundary than would be expected for a straight duct. Analytical progress can be made in the limit of very high mode order, in which case well-known 'whispering gallery' modes, localised close to the wall, can be identified.