973 resultados para Prostatic Specific Antigen
Resumo:
Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.
Resumo:
In this study, we have compared the effector functions and fate of a number of human CTL clones in vitro or ex vivo following contact with variant peptides presented either on the cell surface or in a soluble multimeric format. In the presence of CD8 coreceptor binding, there is a good correlation between TCR signaling, killing of the targets, and Fast-mediated CTL apoptosis. Blocking CD8 binding using (alpha3 domain mutants of MHC class I results in much reduced signaling and reduced killing of the targets. Surprisingly, however, Fast expression is induced to a similar degree on these CTLs, and apoptosis of CTL is unaffected. The ability to divorce these events may allow the deletion of antigen-specific and pathological CTL populations without the deleterious effects induced by full CTL activation.
Resumo:
We have identified novel adjuvant activity in specific cytosol fractions from trophozoites of Giardia isolate BRIS/95/HEPU/2041 (J. A. Upcroft, P. A. McDonnell, and P. Upcroft, Parasitol. Today, 14:281-284, 1998). Adjuvant activity was demonstrated in the systemic and mucosal compartments when Giardia extract was coadministered orally with antigen to mice. Enhanced antigen-specific serum antibody responses were demonstrated by enzyme-linked immunosorbent. assay to be comparable to those generated by the gold standard, mucosal adjuvant cholera toxin. A source of adjuvant activity was localized to the cytosolic component of the parasite. Fractionation of the cytosol produced fraction pools, some of which, when coadministered with antigen, stimulated an enhanced antigen-specific serum response. The toxic component of conventional mucosal adjuvants is associated with adjuvant activity; therefore, in a similar way, the toxin-like attributes of BRIS/95/HEPU/2041 may be responsible for its adjuvanticity. Complete characterization of the adjuvant is under way.
Resumo:
Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. ReIB activation is required for myeloid DC differentiation. Here, we show that antigen-exposed DCs in which ReIB function is inhibited lack cell surface CD40, prevent priming of immunity, and suppress previously primed immune responses. DCs generated from CD40-deficient mice similarly confer suppression. Regulatory CD4(+) T cells induced by the DCs transfer antigen-specific Infectious tolerance to primed recipients in an interleukin10-dependent fashion. Thus CD40, regulated by ReIB activity, determines the consequences of antigen presentation by myeloid DCs. These observations have significance for autoimmune immunotherapy and suggest a mechanism by which peripheral tolerance might be constitutively maintained by RelB(-) CD40(-) DCs.
Resumo:
In order to evaluate the potential allergenicity of Blomia tropicalis (Bt) antigen, IgE production of both specific and non-specific for Bt antigen was monitored in BALB/c mice after exposure to the antigen by nasal route. It was evidenced that B. tropicalis contains a functional allergen in its components. The allergenic components, however, when administered intranasally without any adjuvant, did not function to induce IgE response within a short period. On the other hand, intranasal inoculation of Bt antigens augmented serum IgE responses in mice pretreated by a subcutaneous priming injection of the same antigens. Inoculation of Bt antigen without subcutaneous priming injections induced IgE antibody production only when the antigen was continuously administered for a long period of over 24 weeks. Even when the priming injection was absent, the Bt antigen inoculated with cholera toxin (CT) as a mucosal adjuvant also significantly augmented the Bt antigen-specific IgE responses depending on the dose of CT co-administered. The present study also demonstrated that Bt antigen/CT-inoculated mice showed increased non-specific serum IgE level and peripheral blood eosinophil rates without noticeable elevations of the total leukocyte counts. The immunoblot analysis demonstrated 5 main antigenic components reactive to IgE antibodies induced. These components at about 44-64 kDa position were considered to be an important candidate antigen for diagnosis of the mite-related allergy.
Resumo:
Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR.
Resumo:
Theoretically, serological assays with affinity purified marker antigens can allow strain-specific diagnosis even when parasites cannot be retrieved from and infected host. A Trypanosoma cruzi antigen was purified by affinity chromatography using a zymodeme (Z) 2 specific monoclonal antibody (2E2C11). An indirect enzyme-linked immunosorbent assay (ELISA) based on the purified antigen could discriminate between sera from rabbits immunized with T. cruzi zymodeme clones but could not discriminate between sera from mice infected with different zymodemes.
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
RESUME Nous n'avons pas de connaissance précise des facteurs à l'origine de l'hétérogénéité phénotypique des cellules T CD4 mémoires. Une troisième population phénotypique des cellules T CD4 mémoires, caractérisée par les marqueurs CD45RA+CCR7- a été identifiée dans cette étude. Cette population présente un état de différentiation avancée, comme en témoigne son histoire de réplication, ainsi que sa capacité de prolifération homéostatique. Les réponses des cellules T CD4 mémoires à différentes conditions de persistance et charge antigénique ont trois patterns phénotypiques différents, caractérisés par les marqueurs CD45RA et CCR7. La réponse CD4 mono -phénotypique CD45RA-CCR7+ ou CD45RA- CCR7- est associée à des conditions d'élimination de l'antigène (telle la réponse CD4 tétanos spécifique) ou à des conditions de persistance antigénique et de virémie élevée (telle la réponse HIV chronique ou la primo-infection CMV) respectivement. D'autre part, les réponses T CD4 multi -phénotypiques CD45RA-CCR7+ sont associées à des conditions d'exposition antigénique prolongée et de faible virémie (telles les infections CMV, EBV et HSV ou les infections HIV chez les long term non progressons). La réponse mono -phénotypique CD45RA- CCR7+ est propre aux cellules T CD4 secrétant de IL2, définies également comme centrales mémoires, la réponse CD45RA- CCR7- aux cellules T CD4 secrétant de l'IFNγ et finalement la réponse mufti-phénotypique aux cellules T CD4 secrétant à la fois de l'IL2 et de l' IFNγ. En conclusion, ces résultats témoignent d'une régulation de l'hétérogénéité phénotypique par l'exposition et la charge antigénique. ABSTRACT The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA+CCRT that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA'CCR7+ or CD45RA'CCR7' CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA CCR7+, CD45RA'CCRT and CD45RA+CCRT CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA'CCR7+ response was typical of central memory (TCM) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA CCRT response of effector memory (TEM) IFN-γ -secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-γ -secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced) stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced) triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.
Resumo:
Different patterns of cutaneous leishmaniasis can be induced when a challenge of alike dose of Leishmania amazonensis amastigotes in various inbred strains was applied. Two strains of mice, the Balb/c and C57 BL/10J, showed exceptional suscepbility, and 10(elevado a sexta potência) amastigotes infective dose lead, to ulcerative progressive lesions with cutaneous metastasis and loss by necrosis of leg on wich the footpad primary lesion occured. Lesions were also progressive but in a lower degree when C3H/HeN and C57BL/6 were infected. Lesions progress slowly in DBA/2 mice presenting lesions wich reach a discreet peack after 12 weeks, do not heal but do not uncerate. DBA/2 mice is, therefore, a good model for immunomodualtion. In attempt to determine the influence of BCG in vaccination schedule using microsomal fraction, DBA/2 became an excellent model, since it is also a non-responder to BCG. Vaccination of DBA/2 mice, receiving the same 10(elevado a sexta potência) BCG viable dose and 10 *g or 50 *g of protein content of microsomal fraction, lead to a progressive disease with time course similar to those observed in susceptible non-vaccinated C57BL/10J mice after 6 months of observation. An enhancement of infection in BCG non-responder mice suggests that use of BCG as immunostimulant in humans could be critical for both vaccination and immunoprophylactic strategies.
Resumo:
We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.