919 resultados para Processamento de Imagens
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Content-based image retrieval is still a challenging issue due to the inherent complexity of images and choice of the most discriminant descriptors. Recent developments in the field have introduced multidimensional projections to burst accuracy in the retrieval process, but many issues such as introduction of pattern recognition tasks and deeper user intervention to assist the process of choosing the most discriminant features still remain unaddressed. In this paper, we present a novel framework to CBIR that combines pattern recognition tasks, class-specific metrics, and multidimensional projection to devise an effective and interactive image retrieval system. User interaction plays an essential role in the computation of the final multidimensional projection from which image retrieval will be attained. Results have shown that the proposed approach outperforms existing methods, turning out to be a very attractive alternative for managing image data sets.
Resumo:
Creating high-quality quad meshes from triangulated surfaces is a highly nontrivial task that necessitates consideration of various application specific metrics of quality. In our work, we follow the premise that automatic reconstruction techniques may not generate outputs meeting all the subjective quality expectations of the user. Instead, we put the user at the center of the process by providing a flexible, interactive approach to quadrangulation design. By combining scalar field topology and combinatorial connectivity techniques, we present a new framework, following a coarse to fine design philosophy, which allows for explicit control of the subjective quality criteria on the output quad mesh, at interactive rates. Our quadrangulation framework uses the new notion of Reeb atlas editing, to define with a small amount of interactions a coarse quadrangulation of the model, capturing the main features of the shape, with user prescribed extraordinary vertices and alignment. Fine grain tuning is easily achieved with the notion of connectivity texturing, which allows for additional extraordinary vertices specification and explicit feature alignment, to capture the high-frequency geometries. Experiments demonstrate the interactivity and flexibility of our approach, as well as its ability to generate quad meshes of arbitrary resolution with high-quality statistics, while meeting the user's own subjective requirements.
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
In this paper, we present a novel approach to perform similarity queries over medical images, maintaining the semantics of a given query posted by the user. Content-based image retrieval systems relying on relevance feedback techniques usually request the users to label relevant/irrelevant images. Thus, we present a highly effective strategy to survey user profiles, taking advantage of such labeling to implicitly gather the user perceptual similarity. The profiles maintain the settings desired for each user, allowing tuning of the similarity assessment, which encompasses the dynamic change of the distance function employed through an interactive process. Experiments on medical images show that the method is effective and can improve the decision making process during analysis.
Resumo:
Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user’s attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) – given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing – in the same setting, find clusters, the top-'N IND.O' outlier images, and the 'N IND.R' images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method’s practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images.
Resumo:
In this paper,we present a novel texture analysis method based on deterministic partially self-avoiding walks and fractal dimension theory. After finding the attractors of the image (set of pixels) using deterministic partially self-avoiding walks, they are dilated in direction to the whole image by adding pixels according to their relevance. The relevance of each pixel is calculated as the shortest path between the pixel and the pixels that belongs to the attractors. The proposed texture analysis method is demonstrated to outperform popular and state-of-the-art methods (e.g. Fourier descriptors, occurrence matrix, Gabor filter and local binary patterns) as well as deterministic tourist walk method and recent fractal methods using well-known texture image datasets.
Resumo:
Dynamic texture is a recent field of investigation that has received growing attention from computer vision community in the last years. These patterns are moving texture in which the concept of selfsimilarity for static textures is extended to the spatiotemporal domain. In this paper, we propose a novel approach for dynamic texture representation, that can be used for both texture analysis and segmentation. In this method, deterministic partially self-avoiding walks are performed in three orthogonal planes of the video in order to combine appearance and motion features. We validate our method on three applications of dynamic texture that present interesting challenges: recognition, clustering and segmentation. Experimental results on these applications indicate that the proposed method improves the dynamic texture representation compared to the state of the art.
Resumo:
Assunto bastante abordado quando se trata de Sistemas Inteligentes de Transportes (ITS), a identificação veicular - utilizada em grande parte das aplicações de ITS deve ser entendida como um conjunto de recursos de hardware, software e telecomunicações, que interagem para atingir, do ponto de vista funcional, o objetivo de, conseguir extrair e transmitir, digitalmente, a identidade de um veículo. É feita tanto por sistemas que transmitem e recebem uma identidade digital quanto por sistemas que, instalados na infraestrutura da via, são capazes de reconhecer a placa dos veículos circulantes. Quando se trata da identificação automática por meio do reconhecimento da placa veicular, os estudos têm se concentrado sobremaneira nas tecnologias de processamento de imagens, não abordando - em sua maioria - uma visão sistêmica, necessária para compreender de maneira mais abrangente todas as variáveis que podem interferir na eficácia da identificação. Com o objetivo de contribuir para melhor entender e utilizar os sistemas de reconhecimento automático de placas veiculares, este trabalho propõe um modelo sistêmico, em camadas, para representar seus componentes. Associada a esse modelo, propõe uma classificação para os diversos tipos de falhas que podem prejudicar seu desempenho. Uma análise desenvolvida com resultados obtidos em testes realizados em campo com sistemas de identificação de placas voltados à fiscalização de veículos aponta resultados relevantes e limitações para obter correlações entre variáveis, em função dos diversos fatores que podem influenciar os resultados. Algumas entrevistas realizadas apontam os tipos de falhas que ocorrem com mais frequência durante a operação desses sistemas. Finalmente, este trabalho propõe futuros estudos e apresenta um glossário de termos, que poderá ser útil a novos pesquisadores.
Resumo:
Uma grande diversidade de macrofibras poliméricas para reforço de concreto se encontram disponibilizadas hoje em dia. Por natureza estas fibras apresentam grande diversidade de características e propriedades. Estas variações afetam sua atuação como reforço no concreto. No entanto, não há normas brasileiras sobre o assunto e as metodologias de caracterização de normas estrangeiras apresentam divergências. Algumas normas definem que a caracterização do comportamento mecânico deva ser feita nos fios originais e outras que se devam utilizar métodos definidos para caracterização de materiais metálicos. A norma EN14889-2:2006 apresenta maior abrangência, mas deixa dúvidas quanto à adequação dos critérios de caracterização geométrica das fibras e não define um método de ensaio específico para sua caracterização mecânica. Assim, há a necessidade de estabelecimento de uma metodologia que permita a realização de um programa de controle de qualidade da fibra nas condições de emprego. Esta metodologia também proporcionaria uma forma de caracterização do material para estudos experimentais, o que permitiria maior fundamentação científica desses trabalhos que, frequentemente, fundamentam-se apenas em dados dos fabricantes. Assim, foi desenvolvido um estudo experimental focando a caracterização de duas macrofibras poliméricas disponíveis no mercado brasileiro. Focou-se o estudo na determinação dos parâmetros geométricos e na caracterização mecânica através da determinação da resistência à tração e avaliação do módulo de elasticidade. Na caracterização geométrica foi adotada como referência a norma europeia EN14889-2:2006. As medições do comprimento se efetuaram por dois métodos: o método do paquímetro e o método de análise de imagens digitais, empregando um software para processamento das imagens. Para a medição do diâmetro, além das metodologias mencionadas, foi usado o método da densidade. Conclui-se que o método do paquímetro, com o cuidado de esticar previamente as macrofibras, e o método das imagens digitais podem ser igualmente utilizados para medir o comprimento. Já parar determinar o diâmetro, recomenda-se o método da densidade. Quanto à caracterização mecânica, foi desenvolvida uma metodologia própria a partir de informações obtidas de outros ensaios. Assim, efetuaram-se ensaios de tração direta nas macrofibras coladas em molduras de tecido têxtil. Complementarmente, foi avaliado também o efeito do contato abrasivo das macrofibras com os agregados durante a mistura em betoneira no comportamento mecânico do material. Também se avaliou o efeito do método de determinação da área da seção transversal nos resultados medidos no ensaio de tração da fibra. Conclui-se que o método proposto para o ensaio de tração direta da fibra é viável, especialmente para a determinação da resistência à tração. O valor do módulo de elasticidade, por sua vez, acaba sendo subestimado. A determinação da área da seção da fibra através do método da densidade forneceu também os melhores resultados. Além disso, comprovou-se que o atrito das fibras com o agregado durante a mistura compromete o comportamento mecânico, reduzindo tanto a resistência quanto o módulo de elasticidade. Assim, pode-se afirmar que a metodologia proposta para o controle geométrico e mecânico das macrofibras poliméricas é adequada para a caracterização do material.
Resumo:
Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications
Resumo:
The increasing in world population, with higher proportion of elderly, leads to an increase in the number of individuals with vision loss and cataracts are one of the leading causes of blindness worldwide. Cataract is an eye disease that is the partial or total opacity of the crystalline lens (natural lens of the eye) or its capsule. It can be triggered by several factors such as trauma, age, diabetes mellitus, and medications, among others. It is known that the attendance by ophthalmologists in rural and poor areas in Brazil is less than needed and many patients with treatable diseases such as cataracts are undiagnosed and therefore untreated. In this context, this project presents the development of OPTICA, a system of teleophthalmology using smartphones for ophthalmic emergencies detection, providing a diagnostic aid for cataract using specialists systems and image processing techniques. The images are captured by a cellphone camera and along with a questionnaire filled with patient information are transmitted securely via the platform Mobile SANA to a online server that has an intelligent system available to assist in the diagnosis of cataract and provides ophthalmologists who analyze the information and write back the patient’s report. Thus, the OPTICA provides eye care to the poorest and least favored population, improving the screening of critically ill patients and increasing access to diagnosis and treatment.
Resumo:
This Thesis main objective is to implement a supporting architecture to Autonomic Hardware systems, capable of manage the hardware running in reconfigurable devices. The proposed architecture implements manipulation, generation and communication functionalities, using the Context Oriented Active Repository approach. The solution consists in a Hardware-Software based architecture called "Autonomic Hardware Manager (AHM)" that contains an Active Repository of Hardware Components. Using the repository the architecture will be able to manage the connected systems at run time allowing the implementation of autonomic features such as self-management, self-optimization, self-description and self-configuration. The proposed architecture also contains a meta-model that allows the representation of the Operating Context for hardware systems. This meta-model will be used as basis to the context sensing modules, that are needed in the Active Repository architecture. In order to demonstrate the proposed architecture functionalities, experiments were proposed and implemented in order to proof the Thesis hypothesis and achieved objectives. Three experiments were planned and implemented: the Hardware Reconfigurable Filter, that consists of an application that implements Digital Filters using reconfigurable hardware; the Autonomic Image Segmentation Filter, that shows the project and implementation of an image processing autonomic application; finally, the Autonomic Autopilot application that consist of an auto pilot to unmanned aerial vehicles. In this work, the applications architectures were organized in modules, according their functionalities. Some modules were implemented using HDL and synthesized in hardware. Other modules were implemented kept in software. After that, applications were integrated to the AHM to allow their adaptation to different Operating Context, making them autonomic.