969 resultados para Probability distribution functions
Resumo:
Di Crescenzo and Longobardi (2002) introduced a measure of uncertainty in past lifetime distributions and studied its relationship with residual entropy function. In the present paper, we introduce a quantile version of the entropy function in past lifetime and study its properties. Unlike the measure of uncertainty given in Di Crescenzo and Longobardi (2002) the proposed measure uniquely determines the underlying probability distribution. The measure is used to study two nonparametric classes of distributions. We prove characterizations theorems for some well known quantile lifetime distributions
Resumo:
The progress in microsystem technology or nano technology places extended requirements to the fabrication processes. The trend is moving towards structuring within the nanometer scale on the one hand, and towards fabrication of structures with high aspect ratio (ratio of vertical vs. lateral dimensions) and large depths in the 100 µm scale on the other hand. Current procedures for the microstructuring of silicon are wet chemical etching and dry or plasma etching. A modern plasma etching technique for the structuring of silicon is the so-called "gas chopping" etching technique (also called "time-multiplexed etching"). In this etching technique, passivation cycles, which prevent lateral underetching of sidewalls, and etching cycles, which etch preferably in the vertical direction because of the sidewall passivation, are constantly alternated during the complete etching process. To do this, a CHF3/CH4 plasma, which generates CF monomeres is employed during the passivation cycle, and a SF6/Ar, which generates fluorine radicals and ions plasma is employed during the etching cycle. Depending on the requirements on the etched profile, the durations of the individual passivation and etching cycles are in the range of a few seconds up to several minutes. The profiles achieved with this etching process crucially depend on the flow of reactants, i.e. CF monomeres during the passivation cycle, and ions and fluorine radicals during the etching cycle, to the bottom of the profile, especially for profiles with high aspect ratio. With regard to the predictability of the etching processes, knowledge of the fundamental effects taking place during a gas chopping etching process, and their impact onto the resulting profile is required. For this purpose in the context of this work, a model for the description of the profile evolution of such etching processes is proposed, which considers the reactions (etching or deposition) at the sample surface on a phenomenological basis. Furthermore, the reactant transport inside the etching trench is modelled, based on angular distribution functions and on absorption probabilities at the sidewalls and bottom of the trench. A comparison of the simulated profiles with corresponding experimental profiles reveals that the proposed model reproduces the experimental profiles, if the angular distribution functions and absorption probabilities employed in the model is in agreement with data found in the literature. Therefor the model developed in the context of this work is an adequate description of the effects taking place during a gas chopping plasma etching process.
Resumo:
This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
We formulate density estimation as an inverse operator problem. We then use convergence results of empirical distribution functions to true distribution functions to develop an algorithm for multivariate density estimation. The algorithm is based upon a Support Vector Machine (SVM) approach to solving inverse operator problems. The algorithm is implemented and tested on simulated data from different distributions and different dimensionalities, gaussians and laplacians in $R^2$ and $R^{12}$. A comparison in performance is made with Gaussian Mixture Models (GMMs). Our algorithm does as well or better than the GMMs for the simulations tested and has the added advantage of being automated with respect to parameters.
Resumo:
The log-ratio methodology makes available powerful tools for analyzing compositional data. Nevertheless, the use of this methodology is only possible for those data sets without null values. Consequently, in those data sets where the zeros are present, a previous treatment becomes necessary. Last advances in the treatment of compositional zeros have been centered especially in the zeros of structural nature and in the rounded zeros. These tools do not contemplate the particular case of count compositional data sets with null values. In this work we deal with \count zeros" and we introduce a treatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichlet probability distribution as a prior and we estimate the posterior probabilities. Then we apply a multiplicative modi¯cation for the non-zero values. We present a case study where this new methodology is applied. Key words: count data, multiplicative replacement, composition, log-ratio analysis
Resumo:
Introducción: la enfermedad cardiovascular es la primera causa de morbi-mortalidad en los países desarrollados, y en algunos en transición como es el caso de Colombia. Según la Organización Mundial de la Salud, las enfermedades cardiovasculares causan 17.5 millones de muertes en el mundo cada año y representan la mitad de todas las muertes en los Estados Unidos y otros países desarrollados. Objetivo: describir la prevalencia de los factores de riesgo cardiovascular en trabajadores de una Institución Universitaria de la ciudad de Bogotá D.C, con el fin de establecer estrategias de promoción de la salud y prevención de enfermedad cardiovascular. Metodología: estudio descriptivo de corte transversal, a través de una muestra de sujetos voluntarios con libre participación. Los trabajadores que decidieron participar se les aplico un cuestionario y se realizó una muestra de sangre por llenado capilar, empleando la técnica de Química Seca (Reflotrón). Acuden 751 trabajadores. Se utilizo un formato como método para recolección de información del examen físico, resultados de paraclínicos y antecedentes de factores de riesgo cardiovascular. Resultados: se realizo la encuesta a 751 trabajadores de las cuales la media de edad fue de 39,7 años. De la población evaluada el 70% pertenecía al género femenino y 30% al género masculino. El 38,6% presentó dislipidemia (colesterol y/o triglicéridos elevados) ;el 7% de la población presentaba diabetes; en diferentes grados de obesidad 6,2% y en sobrepeso se encontraba el 36,8% ; 11,1% son fumadores; y una cifra elevada del 58,7% llevaba una vida sedentaria. El análisis bivariado permitió identificar la relación entre los factores de riesgo y el tipo de trabajador, El valor obtenido se encuentra dentro del rango de mayor probabilidad según la distribución ji-cuadrado frente al factor de riesgo de dislipidemia y sedentarismo. Conclusión: la prevalencia de factores de riesgo en este estudio ha sido similar a la de otros estudios en demás países occidentales; se observó diferencia significativa en la vida sedentaria. Se notó un incremento de los factores de riesgo para las enfermedades cardiovasculares correlacionándolas con la edad, lo cual permite empezar a adoptar y modificar el estilo de vida para disminuir los riesgos de las enfermedades cardiovasculares.
Resumo:
En este documento se revisa teóricamente la distribución de probabilidad de Poisson como función que asigna a cada suceso definido, sobre una variable aleatoria discreta, la probabilidad de ocurrencia en un intervalo de tiempo o región del espacio disjunto. Adicionalmente se revisa la distribución exponencial negativa empleada para modelar el intervalo de tiempo entre eventos consecutivos de Poisson que ocurren de manera independiente; es decir, en los cuales la probabilidad de ocurrencia de los eventos sucedidos en un intervalo de tiempo no depende de los ocurridos en otros intervalos de tiempo, por esta razón se afirma que es una distribución que no tiene memoria. El proceso de Poisson relaciona la función de Poisson, que representa un conjunto de eventos independientes sucedidos en un intervalo de tiempo o región del espacio con los tiempos dados entre la ocurrencia de los eventos según la distribución exponencial negativa. Los anteriores conceptos se usan en la teoría de colas, rama de la investigación de operaciones que describe y brinda soluciones a situaciones en las que un conjunto de individuos o elementos forman colas en espera de que se les preste un servicio, por lo cual se presentan ejemplos de aplicación en el ámbito médico.