914 resultados para Probabilistic logic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we propose a new approach to deduction methods for temporal logic. Our proposal is based on an inductive definition of eventualities that is different from the usual one. On the basis of this non-customary inductive definition for eventualities, we first provide dual systems of tableaux and sequents for Propositional Linear-time Temporal Logic (PLTL). Then, we adapt the deductive approach introduced by means of these dual tableau and sequent systems to the resolution framework and we present a clausal temporal resolution method for PLTL. Finally, we make use of this new clausal temporal resolution method for establishing logical foundations for declarative temporal logic programming languages. The key element in the deduction systems for temporal logic is to deal with eventualities and hidden invariants that may prevent the fulfillment of eventualities. Different ways of addressing this issue can be found in the works on deduction systems for temporal logic. Traditional tableau systems for temporal logic generate an auxiliary graph in a first pass.Then, in a second pass, unsatisfiable nodes are pruned. In particular, the second pass must check whether the eventualities are fulfilled. The one-pass tableau calculus introduced by S. Schwendimann requires an additional handling of information in order to detect cyclic branches that contain unfulfilled eventualities. Regarding traditional sequent calculi for temporal logic, the issue of eventualities and hidden invariants is tackled by making use of a kind of inference rules (mainly, invariant-based rules or infinitary rules) that complicates their automation. A remarkable consequence of using either a two-pass approach based on auxiliary graphs or aone-pass approach that requires an additional handling of information in the tableau framework, and either invariant-based rules or infinitary rules in the sequent framework, is that temporal logic fails to carry out the classical correspondence between tableaux and sequents. In this thesis, we first provide a one-pass tableau method TTM that instead of a graph obtains a cyclic tree to decide whether a set of PLTL-formulas is satisfiable. In TTM tableaux are classical-like. For unsatisfiable sets of formulas, TTM produces tableaux whose leaves contain a formula and its negation. In the case of satisfiable sets of formulas, TTM builds tableaux where each fully expanded open branch characterizes a collection of models for the set of formulas in the root. The tableau method TTM is complete and yields a decision procedure for PLTL. This tableau method is directly associated to a one-sided sequent calculus called TTC. Since TTM is free from all the structural rules that hinder the mechanization of deduction, e.g. weakening and contraction, then the resulting sequent calculus TTC is also free from this kind of structural rules. In particular, TTC is free of any kind of cut, including invariant-based cut. From the deduction system TTC, we obtain a two-sided sequent calculus GTC that preserves all these good freeness properties and is finitary, sound and complete for PLTL. Therefore, we show that the classical correspondence between tableaux and sequent calculi can be extended to temporal logic. The most fruitful approach in the literature on resolution methods for temporal logic, which was started with the seminal paper of M. Fisher, deals with PLTL and requires to generate invariants for performing resolution on eventualities. In this thesis, we present a new approach to resolution for PLTL. The main novelty of our approach is that we do not generate invariants for performing resolution on eventualities. Our method is based on the dual methods of tableaux and sequents for PLTL mentioned above. Our resolution method involves translation into a clausal normal form that is a direct extension of classical CNF. We first show that any PLTL-formula can be transformed into this clausal normal form. Then, we present our temporal resolution method, called TRS-resolution, that extends classical propositional resolution. Finally, we prove that TRS-resolution is sound and complete. In fact, it finishes for any input formula deciding its satisfiability, hence it gives rise to a new decision procedure for PLTL. In the field of temporal logic programming, the declarative proposals that provide a completeness result do not allow eventualities, whereas the proposals that follow the imperative future approach either restrict the use of eventualities or deal with them by calculating an upper bound based on the small model property for PLTL. In the latter, when the length of a derivation reaches the upper bound, the derivation is given up and backtracking is used to try another possible derivation. In this thesis we present a declarative propositional temporal logic programming language, called TeDiLog, that is a combination of the temporal and disjunctive paradigms in Logic Programming. We establish the logical foundations of our proposal by formally defining operational and logical semantics for TeDiLog and by proving their equivalence. Since TeDiLog is, syntactically, a sublanguage of PLTL, the logical semantics of TeDiLog is supported by PLTL logical consequence. The operational semantics of TeDiLog is based on TRS-resolution. TeDiLog allows both eventualities and always-formulas to occur in clause heads and also in clause bodies. To the best of our knowledge, TeDiLog is the first declarative temporal logic programming language that achieves this high degree of expressiveness. Since the tableau method presented in this thesis is able to detect that the fulfillment of an eventuality is prevented by a hidden invariant without checking for it by means of an extra process, since our finitary sequent calculi do not include invariant-based rules and since our resolution method dispenses with invariant generation, we say that our deduction methods are invariant-free.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, ac- tuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based spec- ifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considera- tions for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area.

This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller.

The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is ex- plored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is motivated by safety-critical applications involving autonomous air, ground, and space vehicles carrying out complex tasks in uncertain and adversarial environments. We use temporal logic as a language to formally specify complex tasks and system properties. Temporal logic specifications generalize the classical notions of stability and reachability that are studied in the control and hybrid systems communities. Given a system model and a formal task specification, the goal is to automatically synthesize a control policy for the system that ensures that the system satisfies the specification. This thesis presents novel control policy synthesis algorithms for optimal and robust control of dynamical systems with temporal logic specifications. Furthermore, it introduces algorithms that are efficient and extend to high-dimensional dynamical systems.

The first contribution of this thesis is the generalization of a classical linear temporal logic (LTL) control synthesis approach to optimal and robust control. We show how we can extend automata-based synthesis techniques for discrete abstractions of dynamical systems to create optimal and robust controllers that are guaranteed to satisfy an LTL specification. Such optimal and robust controllers can be computed at little extra computational cost compared to computing a feasible controller.

The second contribution of this thesis addresses the scalability of control synthesis with LTL specifications. A major limitation of the standard automaton-based approach for control with LTL specifications is that the automaton might be doubly-exponential in the size of the LTL specification. We introduce a fragment of LTL for which one can compute feasible control policies in time polynomial in the size of the system and specification. Additionally, we show how to compute optimal control policies for a variety of cost functions, and identify interesting cases when this can be done in polynomial time. These techniques are particularly relevant for online control, as one can guarantee that a feasible solution can be found quickly, and then iteratively improve on the quality as time permits.

The final contribution of this thesis is a set of algorithms for computing feasible trajectories for high-dimensional, nonlinear systems with LTL specifications. These algorithms avoid a potentially computationally-expensive process of computing a discrete abstraction, and instead compute directly on the system's continuous state space. The first method uses an automaton representing the specification to directly encode a series of constrained-reachability subproblems, which can be solved in a modular fashion by using standard techniques. The second method encodes an LTL formula as mixed-integer linear programming constraints on the dynamical system. We demonstrate these approaches with numerical experiments on temporal logic motion planning problems with high-dimensional (10+ states) continuous systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the development of a probabilistic approach to robust control is motivated by structural control applications in civil engineering. Often in civil structural applications, a system's performance is specified in terms of its reliability. In addition, the model and input uncertainty for the system may be described most appropriately using probabilistic or "soft" bounds on the model and input sets. The probabilistic robust control methodology contrasts with existing H∞/μ robust control methodologies that do not use probability information for the model and input uncertainty sets, yielding only the guaranteed (i.e., "worst-case") system performance, and no information about the system's probable performance which would be of interest to civil engineers.

The design objective for the probabilistic robust controller is to maximize the reliability of the uncertain structure/controller system for a probabilistically-described uncertain excitation. The robust performance is computed for a set of possible models by weighting the conditional performance probability for a particular model by the probability of that model, then integrating over the set of possible models. This integration is accomplished efficiently using an asymptotic approximation. The probable performance can be optimized numerically over the class of allowable controllers to find the optimal controller. Also, if structural response data becomes available from a controlled structure, its probable performance can easily be updated using Bayes's Theorem to update the probability distribution over the set of possible models. An updated optimal controller can then be produced, if desired, by following the original procedure. Thus, the probabilistic framework integrates system identification and robust control in a natural manner.

The probabilistic robust control methodology is applied to two systems in this thesis. The first is a high-fidelity computer model of a benchmark structural control laboratory experiment. For this application, uncertainty in the input model only is considered. The probabilistic control design minimizes the failure probability of the benchmark system while remaining robust with respect to the input model uncertainty. The performance of an optimal low-order controller compares favorably with higher-order controllers for the same benchmark system which are based on other approaches. The second application is to the Caltech Flexible Structure, which is a light-weight aluminum truss structure actuated by three voice coil actuators. A controller is designed to minimize the failure probability for a nominal model of this system. Furthermore, the method for updating the model-based performance calculation given new response data from the system is illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a probabilistic assessment of the performance of structures subjected to uncertain environmental loads such as earthquakes, an important problem is to determine the probability that the structural response exceeds some specified limits within a given duration of interest. This problem is known as the first excursion problem, and it has been a challenging problem in the theory of stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the problem has received, there is no procedure available for its general solution, especially for engineering problems of interest where the complexity of the system is large and the failure probability is small.

The application of simulation methods to solving the first excursion problem is investigated in this dissertation, with the objective of assessing the probabilistic performance of structures subjected to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective, the major difficulty in the first excursion problem comes from the large number of uncertain parameters often encountered in the stochastic description of the excitation. Existing simulation tools are examined, with special regard to their applicability in problems with a large number of uncertain parameters. Two efficient simulation methods are developed to solve the first excursion problem. The first method is developed specifically for linear dynamical systems, and it is found to be extremely efficient compared to existing techniques. The second method is more robust to the type of problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure probabilities because the computational effort grows at a much slower rate with decreasing failure probability than standard Monte Carlo simulation. The simulation methods are applied to assess the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure analysis is also carried out using the samples generated during simulation, which provide insight into the probable scenarios that will occur given that a structure fails.