970 resultados para Pressure-Sensitive Dilatant Material
Resumo:
The goal of this work is to develop a magnetic-based passive and wireless pressure sensor for use in biomedical applications. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is composed of two magnetic elements: a magnetically-soft material acts as a sensing element, and a magnetically hard material acts as a biasing element. Both elements are embedded within a rigid sensor body and sealed with an elastomer pressure membrane. Upon excitation of an externally applied AC magnetic field, the sensing element is capable of producing higher-order magnetic signature that is able to be remotely detected with an external receiving coil. When exposed to environment with changing ambient pressure, the elastomer pressure membrane of pressure sensor is deflected depending on the surrounding pressure. The deflection of elastomer membrane changes the separation distance between the sensing and biasing elements. As a result, the higher-order harmonic signal emitted by the magnetically-soft sensing element is shifted, allowing detection of pressure change by determining the extent of the harmonic shifting. The passive and wireless nature of the sensor is enabled with an external excitation and receiving system consisting of an excitation coil and a receiving coil. These unique characteristics made the sensor suitable to be used for continuous and long-term pressure monitoring, particularly useful for biomedical applications which often require frequent surveillance. In this work, abdominal aortic aneurysm is selected as the disease model for evaluation the performance of pressure sensor and system. Animal model, with subcutaneous sensor implantation in mice, was conducted to demonstrate the efficacy and feasibility of pressure sensor in biological environment.
Resumo:
OBJECTIVES: To assess the bleeding on probing (BOP) tendency and periodontal probe penetration when applying various probing forces at implant sites in patients with a high standard of oral hygiene with well-maintained peri-implant tissues. MATERIAL AND METHODS: Seventeen healthy patients with excellent oral hygiene in a maintenance program after having been treated for periodontitis or gingivitis were recruited. Missing teeth had been replaced using oral implants. The BOP and probing depth (PPD) were assessed at the mid-buccal, mid-oral, mesial and distal aspects of the buccal surfaces of each implant. Moreover, contralateral teeth were designated and assessed for BOP and PPD in the same locations and at the same observation visits. At each visit, implants and contralateral teeth were randomly assigned to one of the standardized probing forces (0.15 or 0.25 N). The second probing force was applied at the repetition of the examination 7 days later. RESULTS: Increasing the probing pressure by 0.1 N from 0.15 N resulted in an increase of BOP percentage by 13.7% and 6.6% for implants and contralateral teeth, respectively. There appeared to be a significant difference of the mean BOP percentage at implant and tooth sites when a probing pressure of 0.25 N was applied. A significantly deeper mean PPD at implant sites compared with tooth sites was found irrespective of the probing pressure applied. CONCLUSIONS: The results of the present study demonstrated that 0.15 N might represent the threshold pressure to be applied to avoid false positive BOP readings around oral implants. Hence, probing around implants demonstrated a higher sensitivity compared with probing around teeth.
Resumo:
A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene3–9, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin’s effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
Most medical implants run on batteries, which require costly and tedious replacement or recharging. It is believed that micro-generators utilizing intracorporeal energy could solve these problems. However, such generators do not, at this time, meet the energy requirements of medical implants.This paper highlights some essential aspects of designing and implementing a power source that scavenges energy from arterial expansion and contraction to operate an implanted medical device. After evaluating various potentially viable transduction mechanisms, the fabricated prototype employs an electromagnetic transduction mechanism. The artery is inserted into a laboratory-fabricated flexible coil which is permitted to freely deform in a magnetic field. This work also investigates the effects of the arterial wall's material properties on energy harvesting potential. For that purpose, two types of arteries (Penrose X-ray tube, which behave elastically, and an artery of a Göttinger minipig, which behaves viscoelastically) were tested. No noticeable difference could be observed between these two cases. For the pig artery, average harvestable power was 42 nW. Moreover, peak power was 2.38 μW. Both values are higher than those of the current state of the art (6 nW/16 nW). A theoretical modelling of the prototype was developed and compared to the experimental results.
Resumo:
Assuming a channelized drainage system in steady state, we investigate the influence of enhanced surface melting on the water pressure in subglacial channels, compared to that of changes in conduit geometry, ice rheology and catchment variations. The analysis is carried out for a specific part of the western Greenland ice-sheet margin between 66 degrees N and 66 degrees 30' N using new high-resolution digital elevation models of the subglacial topography and the ice-sheet surface, based on an airborne ice-penetrating radar survey in 2003 and satellite repeat-track interferometric synthetic aperture radar analysis of European Remote-sensing Satellite 1 and 2 (ERS-1/-2) imagery, respectively. The water pressure is calculated up-glacier along a likely subglacial channel at distances of 1, 5 and 9 km from the outlet at the ice margin, using a modified version of Rothlisberger's equation. Our results show that for the margin of the western Greenland ice sheet, the water pressure in subglacial channels is not sensitive to realistic variations in catchment size and mean surface water input compared to small changes in conduit geometry and ice rheology.
Resumo:
Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints.
Resumo:
PURPOSE Blood loss and blood substitution are associated with higher morbidity after major abdominal surgery. During major liver resection, low local venous pressure, has been shown to reduce blood loss. Ambiguity persists concerning the impact of local venous pressure on blood loss during open radical cystectomy. We aimed to determine the association between intraoperative blood loss and pelvic venous pressure (PVP) and determine factors affecting PVP. MATERIAL AND METHODS In the frame of a single-center, double-blind, randomized trial, PVP was measured in 82 patients from a norepinephrine/low-volume group and in 81 from a control group with liberal hydration. For this secondary analysis, patients from each arm were stratified into subgroups with PVP <5 mmHg or ≥5 mmHg measured after cystectomy (optimal cut-off value for discrimination of patients with relevant blood loss according to the Youden's index). RESULTS Median blood loss was 800 ml [range: 300-1600] in 55/163 patients (34%) with PVP <5 mmHg and 1200 ml [400-3000] in 108/163 patients (66%) with PVP ≥5 mmHg; (P<0.0001). A PVP <5 mmHg was measured in 42/82 patients (51%) in the norepinephrine/low-volume group and 13/81 (16%) in the control group (P<0.0001). PVP dropped significantly after removal of abdominal packing and abdominal lifting in both groups at all time points (at begin and end of pelvic lymph node dissection, end of cystectomy) (P<0.0001). No correlation between PVP and central venous pressure could be detected. CONCLUSIONS Blood loss was significantly reduced in patients with low PVP. Factors affecting PVP were fluid management and abdominal packing.
Resumo:
Sodium is the most abundant extracellular cation and therefore pivotal in determining fluid balance. At the beginning of life, a positive sodium balance is needed to grow. Newborns and preterm infants tend to lose sodium via their kidneys and therefore need adequate sodium intake. Among older children and adults, however, excessive salt intake leads to volume expansion and arterial hypertension. Children who are overweight, born preterm, or small for gestational age and African American children are at increased risk of developing high blood pressure due to a high salt intake because they are more likely to be salt sensitive. In the developed world, salt intake is generally above the recommended intake also among children. Although a positive sodium balance is needed for growth during the first year of life, in older children, a sodium-poor diet seems to have the same cardiovascular protective effects as among adults. This is relevant, since: (1) a blood pressure tracking phenomenon was recognized; (2) the development of taste preferences is important during childhood; and (3) salt intake is often associated with the consumption of sugar-sweetened beverages (predisposing children to weight gain).
Resumo:
High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.
Resumo:
OBJECTIVE To assess intramedullary spinal pressure (IMP) in small breed dogs with thoracolumbar disk extrusion. STUDY DESIGN Prospective cohort study. ANIMALS Small breed dogs (n = 14) with thoracolumbar disk extrusion undergoing hemilaminectomy and healthy chondrodystrophic laboratory dogs (control; n = 3) without spinal disease. METHODS Diagnosis was based on clinical and neurological examinations and magnetic resonance imaging (MRI) and was confirmed intraoperatively. A standardized anesthesia protocol and surgical procedure were used to minimize factors that could influence IMP. Intramedullary pressure was measured through a minidurotomy at the site of spinal cord compression using a fiber optic catheter inserted perpendicular to the longitudinal axis of the spinal cord. Measurements were taken after hemilaminectomy and again after removal of extruded disk material. RESULTS Affected dogs had significantly higher IMP compared to control dogs (P = .008) and IMP decreased significantly post-decompression compared with initial values (P < .001). No correlation was found between IMP and neurologic grade, degree of spinal cord compression on MRI, or signal intensity changes on MRI. CONCLUSION Acute thoracolumbar disk extrusion is associated with increased IMP in small breed dogs and surgical decompression results in an immediate decrease of IMP.
Resumo:
The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front.
Resumo:
We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz and Asphaug, 1999). However, for many cases (e.g. initially partly or fully damaged targets and rubble-pile structures) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold (27, as a function of target properties and target sizes up to a few 100 km show that a fully damaged target modeled without friction has a Q(D)*:, which is significantly (5-10 times) smaller than in the case where friction is included. When the effect of the energy dissipation due to compaction (pore crushing) is taken into account as well, the targets become even stronger (Q(D)*; is increased by a factor of 2-3). On the other hand, cohesion is found to have an negligible effect at large scales and is only important at scales less than or similar to 1 km. Our results show the relative effects of strength, friction and porosity on the outcome of collisions among small (less than or similar to 1000 km) bodies. These results will be used in a future study to improve existing scaling laws for the outcome of collisions (e.g. Leinhardt and Stewart, 2012). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Cells infected with a temperature sensitive phenotypic mutant of Moloney sarcoma virus (MuSVts110) exhibit a transformed phenotype at 33('(DEGREES)) and synthesize two virus specific proteins, p85('gag-mos), a gag-mos fusion protein and p58('gag), a truncated gag precursor protein (the gag gene codes for viral structural proteins and mos is the MuSV transforming gene). At 39('(DEGREES)) only p58('gag) is synthesized and the morphology of the cells is similar to uninfected NRK parental cells. Two MuSVts110 specific RNAs are made in MuSVts110-infected cells, one of 4.0 kb in length, the other of 3.5 kb. Previous work indicated that each of these RNAs arose by a single central deletion of parental MuSV genetic material, and that p58('gag) was made by the 4.0 kb RNA and p85('gag-mos) from the 3.5 kb RNA. The objective of my dissertation research was to map precisely the deletion boundaries of both of the MuSVts110 RNAs, and to determine the proper reading frame across both deletion borders. This work succeeded in arriving at the following conclusions: (a) Using S-1 nuclease analysis and primer extension sequencing, it was found that the 4.0 kb MuSVts110 RNA arose by a 1488 base deletion of 5.2 kb parental MuSV genomic RNA. This deletion resulted in an out of frame fusion of the gag and mos genes that resulted in the formation of a "stop" codon which causes termination of translation just beyond the c-terminus of the gag region. Thus, this RNA can only be translated into the truncated gag protein p58('gag). (b) S-1 analysis of RNA from cells cultivated at different temperatures demonstrated that the 4.0 kb RNA was synthesized at all temperatures but that synthesis of the 3.5 kb RNA was temperature sensitive. These observations supported the data derived from blot hybridization experiments the interpretation of which argued for the existence of a single provirus in MuSVts110 infected cells, and hence only a single primary transcript (the 4.0 kb RNA). (c) Analyses similar to those described in (a) above showed that the 3.5 kb RNA was derived from the 4.0 kb MuSVts110 RNA by a further deletion of 431 bases, fusing the gag and mos genes into a continuous reading frame capable of directing synthesis of the p85('gag-mos) protein. These sequence data and the presence of only one MuSVts110-specific provirus, indicate that a splice mechanism is employed to generate the 3.5 kb RNA since the gag and mos genes are observed to be fused in frame in this RNA. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
Morphine is the most common clinical choice in the management of severe pain. Although the molecular mechanisms of morphine have already been characterized, the cerebral circuits by which it attenuates the sensation of pain have not yet been studied in humans. The objective of this two-arm (morphine versus placebo), between-subjects study was to examine whether morphine affects pain via pain-related cortical circuits, but also via reward regions that relate to the motivational state, as well as prefrontal regions that relate to vigilance as a result of morphine's sedative effects. Cortical activity was measured by the blood-oxygen-level-dependent (BOLD) signal changes using functional magnetic resonance imaging (fMRI). ^ The novelty of this study is at three levels: (i) to develop a methodology that will assess the average BOLD signal across subjects for the pain, reward, and vigilance cortical systems; (ii) to examine whether the reward and/or sedative effects of morphine are contributing factors to cortical regions associated with the motivational state and vigilance; and (iii) to propose a neuroanatomical model related to the opioid-sensitive effects of reward and sedation as a function of cortical activity related to pain in an effort to assess future analgesics. ^ Consistent with our hypotheses, our findings showed that the decrease in total pain-related volume activated between the post- and the pre-treatment morphine group was about 78%, while the post-treatment placebo group displayed only a 5% decrease when compared to pre-treatment levels of activation. The volume increase in reward regions was 451% in the post-treatment compared to the pre-treatment morphine condition. Finally, the volumetric decrease in vigilance regions was 63% in the posttreatment compared to the pre-treatment morphine condition. ^ These findings imply that changes in the blood flow of the reward and vigilance regions may be contributing factors in producing the analgesic effect under morphine administration. Future studies need to replicate this study in a higher resolution fMRI environment and to assess the proposed neuroanatomical model in patient populations. The necessity of pain research is apparent, since pain cuts across different diseases especially chronic ones, and thus, is recognized as a vital public health developing area. ^