961 resultados para Pressure support ventilation
Resumo:
UNLABELLED Evidence for target values of arterial oxygen saturation (SaO2), CO2, and pH has changed substantially over the last 20 years. A representative survey concerning treatment strategies in extremely low-birth-weight infants (ELBW) was sent to all German neonatal intensive care units (NICUs) treating ELBW infants in 1997. A follow-up survey was conducted in 2011 and sent to all NICUs in Germany, Austria, and Switzerland. During the observation period, NICUs targeting SaO2 of 80, 85, and 90 % have increased, while units aiming for 94 and 96 % decreased (all p < 0.001). Similarly, NICUs aiming for pH 7.25 or lower increased, while 7.35 or higher decreased (both p < 0.001). Furthermore, more units targeted a CO2 of 50 mmHg (7.3 kPa) or higher (p < 0.001), while fewer targeted 40 or 35 mmHg (p < 0.001). Non-invasive ventilation (NIV) was used in 80.2 % of NICUs in 2011. The most frequently used ventilation modes were synchronized intermittent mandatory ventilation (SIMV) (67.5 %) and intermittent positive pressure ventilation (IPPV) (59.7 %) in 1997 and SIMV (77.2 %) and synchronized intermittent positive pressure ventilation (SIPPV) (26.8 %) in 2011. NICUs reporting frequent or always use of IPPV decreased to 11.0 % (p < 0.001). SIMV (77.2 %) and SIPPV (26.8 %) did not change from 1997 to 2011, while high-frequency oscillation (HFO) increased from 9.1 to 19.7 % (p = 0.018). Differences between countries, level of care, and size of the NICU were minimal. CONCLUSIONS Target values for SaO2 decreased, while CO2 and pH increased significantly during the observation period. Current values largely reflect available evidence at time of the surveys. WHAT IS KNOWN • Evidence concerning target values of oxygen saturation, CO 2 , and pH in extremely low-birth-weight infants has grown substantially. • It is not known to which extent this knowledge is transferred into clinical practice and if treatment strategies have changed. WHAT IS NEW • Target values for oxygen saturation in ELBW infants decreased between 1997 and 2011 while target values for CO 2 and pH increased. • Similar treatment strategies existed in different countries, hospitals of different size, or university versus nonuniversity hospitals in 2011.
Resumo:
BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.
Resumo:
Environmental tobacco smoke (ETS) is a well established health hazard, being causally associated to lung cancer and cardiovascular disease. ETS regulations have been developed worldwide to reduce or eliminate exposure in most public places. Restaurants and bars constitute an exception. Restaurants and bar workers experience the highest ETS exposure levels across several occupations, with correspondingly increased health risks. In Mexico, previous exposure assessment in restaurants and bars showed concentrations in bars and restaurants to be the highest across different public and workplaces. Recently, Mexico developed at the federal level the General Law for Tobacco Control restricting indoors smoking to separated areas. AT the local level Mexico City developed the Law for the Protection of Non-smokers Health, completely banning smoking in restaurants and bars. Studies to assess ETS exposure in restaurants and bars, along with potential health effects were required to evaluate the impact of these legislative changes and to set a baseline measurement for future evaluations.^ A large cross-sectional study conducted in restaurants and bars from four Mexican cities was conducted from July to October 2008, to evaluate the following aims: Aim 1) Explore the potential impact of the Mexico City ban on ETS concentrations through comparison of Mexico City with other cities. Aim 2). Explore the association between ETS exposure, respiratory function indicators and respiratory symptoms. Aim 3). Explore the association between ETS exposure and blood pressure and heart rate.^ Three cities with no smoking ban were selected: Colima (11.5% smoking prevalence), Cuernavaca (21.5% smoking prevalence) and Toluca (27.8% smoking prevalence). Mexico City (27.9% smoking prevalence), the only city with a ban at the time of the study, was also selected. Restaurants and bars were randomly selected from municipal records. A goal of 26 restaurants and 26 bars per city was set, 50% of them under 100 m2. Each establishment was visited during the highest occupancy shift, and managers and workers answered to a questionnaire. Vapor-phase nicotine was measured using passive monitors, that were activated at the beginning and deactivated at the end of the shift. Also, workers participated at the beginning and end of the shift in a short physical evaluation, comprising the measurement of Forced Expiratory Volume in the first second (FEV1) and Peak Expiratory Flow (PEF), as well as blood pressure and heart rate.^ A total of 371 establishments were invited, 219 agreed to participate for a 60.1% participation rate. In them, 828 workers were invited, 633 agreed to participate for a 76% participation rate. Mexico City had at least 4 times less nicotine compared to any of the other cities. Differences between Mexico City and other cities were not explained by establishment characteristics, such as ventilation or air extraction. However, differences between cities disappeared when ban mechanisms, such as policy towards costumer's smoking, were considered in the models. An association between ETS exposure and respiratory symptoms (cough OR=1.27, 95%CI=1.04, 1.55) and respiratory illness (asthma OR=1.97, 95%CI=1.20, 3.24; respiratory illness OR=1.79, 95%CI=1.10, 2.94) was observed. No association between ETS and phlegm, wheezing or respiratory infections was observed. No association between ETS and any of the spirometric indicators was observed. An association between ETS exposure and increased systolic and diastolic blood pressure at the end of the shift was observed among non-smokers (systolic blood pressure beta=1.51, 95%CI=0.44, 2.58; diastolic blood pressure beta=1.50, 95%CI=0.72, 2.28). The opposite effect was observed in heavy smokers, were increased ETS exposure was associated with lower blood pressure at the end of the shift (systolic blood pressure beta=1.90, 95%CI=-3.57, -0.23; diastolic blood pressure beta=-1.46, 95%CI=-2.72, -0.02). No association in light smokers was observed. No association for heart rate was observed. ^ Results from this dissertation suggest Mexico City's smoking ban has had a larger impact on ETS exposure. Ventilation or air extraction, mechanisms of ETS control suggested frequently by tobacco companies to avoid smoking bans were not associated with ETS exposure. This dissertation suggests ETS exposure could be linked to changes in blood pressure and to increased respiratory symptoms. Evidence derived from this dissertation points to the potential negative health effects of ETS exposure in restaurants and bars, and provides support for the development of total smoking bans in this economic sector. ^
Resumo:
Trauma is a leading cause of death worldwide, and is thus a major public health concern. Improving current resuscitation strategies may help to reduce morbidity and mortality from trauma, and clinical research plays an important role in addressing these issues. This thesis is a secondary analysis of data that was collected for a randomized clinical trial being conducted at Ben Taub General Hospital. The trial is designed to compare a hypotensive resuscitation strategy to standard fluid resuscitation for the early treatment of trauma patients in hemorrhagic shock. This thesis examines the clinical outcomes from the first 90 subjects enrolled in the study, with the primary aim of assessing the safety of hypotensive resuscitation within the trauma population. ^ Patients in hemorrhagic shock who required emergent surgery were randomized to one of two arms of the study. Those in the experimental (LMAP) arm were managed with a hypotensive resuscitation strategy in which the target mean arterial pressure was 50mmHg. Those in the control (HMAP) arm were managed with standard fluid resuscitation to a target mean arterial pressure of 65mmHg. Patients were followed for 30 days. Mortality, post-operative complications, and other clinical data were prospectively gathered by the Ben Taub surgical staff and then secondarily analyzed for the purpose of this thesis.^ Subjects in the LMAP group had significantly lower early post-operative mortality compared to those in the HMAP group. 30-day mortality was also lower in the LMAP group, although this did not reach statistical significance. There were no statistically significant differences between the two groups with regards to development of ischemic, hematologic or infectious complications, length of hospitalization, length of ICU stay or duration of mechanical ventilation. ^ Based upon the data presented in this thesis, it appears that hypotensive resuscitation is a safe strategy for use in the trauma population. Specifically, hypotensive resuscitation reduced the risk of early post-operative death from coagulopathic bleeding and did not result in an increased risk of ischemic or other post-operative complications. The preliminary results described in this thesis provide convincing evidence support the continued investigation and use of hypotensive resuscitation in a trauma setting.^
Resumo:
In The Woodlands, Texas, 346 students in grades 9-12, age 14-18 participated in a screening examination for cardiovascular risk factors. The relationships between blood pressure with Type-A-behavior and its components were evaluated. Type-A-behavior was measured using the Hunter-Wolf Type-A-behavior scale.^ The following results refer to the current 24-item version of the Hunter-Wolf Type-A-behavior scale and subscales derived in the Bogalusa study which thereafter were applied to The Woodlands population.^ No significant differences in blood pressure were observed among children in the highest vs. lowest quintile of the Type-A-behavior score or subscales scores. The correlation coefficients of blood pressure with the Type-A-behavior and its components were small and non-significant in both boys and girls. Multiple regression analyses conducted by sex, showed that after adjustment for age, weight and height, the addition of the total Type-A-behavior score or subscale scores did not increase significantly the amount of the variability explained for any of the blood pressure components.^ These analyses were repeated with results from the original 17-item version of the Hunter-Wolf Type-A-behavior scale and subscales derived in Bogalusa. Similarly, no relationship was observed between the 17-item Type-A-behavior score or subscales scores with blood pressure levels in The Woodlands population.^ Finally, it was important to determine whether subscales derived within The Woodlands population would differ from those described in Bogalusa and would relate differently to blood pressure among students in The Woodlands. The corresponding analyses showed that the subscales derived from the two studies were different, but in fact neither set of subscales was importantly related with blood pressure in The Woodlands population.^ The results of this study are largely consistent with those obtained by Hunter and Wolf in Bogalusa, who among the white population found only the factor "Eagerness-Energy" to be associated with fourth phase diastolic blood pressure among girls. Even this relationship which they observed was weak and inconsistent across sex-race groups and blood pressure components. This study does not support even this positive finding. In conclusion, evidence indicates that blood pressure is not associated with Type-A-behavior or its components as measured by the Hunter-Wolf Type-A-behavior scale among white adolescents. ^
Resumo:
This study addressed two purposes: (1) to determine the effect of person-environment fit on the psychological well-being of psychiatric aides and (2) to determine what role the coping resources of social support and control have on the above relationship. Two hundred and ten psychiatric aides working in a state hospital in Texas responded to a questionnaire pertaining to these issues.^ Person-environment fit, as a measure of occupational stress, was assessed through a modified version of the Work Environment Scale (WES). The WES subscales used in this study were: involvement, autonomy, job pressure, job clarity, and physical comfort. Psychological well-being was measured with the General Well-Being Schedule which was developed by the National Center for Health Statistics. Co-worker and supervisor support were measured through the WES and finally, control was assessed through Rotter's Locus of Control Scale.^ The results of this study were as follows: (1) all person-environment (p-e) dimensions appeared to have linear relationships with psychological well-being; (2) the p-e fit - well-being relationship did not appear to be confounded by demographic factors; (3) all p-e fit dimensions were significantly related to well-being except for autonomy; (4) p-e fit was more strongly related to well-being than the environmental measure alone; (5) supervisor support and non-work related support were found to have additive effects on the relationship between p-e fit and well-being, however no interaction or buffering effects were observed; (6) locus of control was found to have additive effects in the prediction of well-being and showed interactive effects with work pressure, involvement and physical comfort; and (7) the testing of the overall study model which included many of the components mentioned above yielded an R('2) = .27.^ Implications of these findings are discussed, future research suggested and applications proposed. ^
Resumo:
The effects of elevated CO2 and temperature on photosynthesis and calcification of two important calcifying reef algae (Halimeda macroloba and Halimeda cylindracea) were investigated with O2 microsensors and chlorophyll a fluorometry through a combination of two pCO2 (400 and 1,200 µatm) and two temperature treatments (28 and 32 °C) equivalent to the present and predicted conditions during the 2100 austral summer. Combined exposure to pCO2 and elevated temperature impaired calcification and photosynthesis in the two Halimeda species due to changes in the microenvironment around the algal segments and a reduction in physiological performance. There were no significant changes in controls over the 5-week experiment, but there was a 50-70 % decrease in photochemical efficiency (maximum quantum yield), a 70-80 % decrease in O2 production and a threefold reduction in calcification rate in the elevated CO2 and high temperature treatment. Calcification in these species is closely coupled with photosynthesis, such that a decrease in photosynthetic efficiency leads to a decrease in calcification. Although pH seems to be the main factor affecting Halimeda species, heat stress also has an impact on their photosystem II photochemical efficiency. There was a strong combined effect of elevated CO2 and temperature in both species, where exposure to elevated CO2 or temperature alone decreased photosynthesis and calcification, but exposure to both elevated CO2 and temperature caused a greater decline in photosynthesis and calcification than in each stress individually. Our study shows that ocean acidification and ocean warming are drivers of calcification and photosynthesis inhibition in Halimeda. Predicted climate change scenarios for 2100 would therefore severely affect the fitness of Halimeda, which can result in a strongly reduced production of carbonate sediments on coral reefs under such changed climate conditions.
Resumo:
Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120-180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.
Resumo:
There is increasing pressure on developers to produce usable systems, which requires the use of appropriate methods to support user centred design during development. There is currently no consistent advice on which methods are appropriate in which circumstances, so the selection of methods relies on individual experience and expertise. Considerable effort is required to collate information from various sources and to understand the applicability of each method in a particular situation. Usability Planner is a tool aimed to support the selection of the most appropriate methods depending on project and organizational constraints. Many of the rules employed are derived from ISO standards, complemented with rules from the authors’ experience.
Resumo:
Over the past few years, the common practice within air traffic management has been that commercial aircraft fly by following a set of predefined routes to reach their destination. Currently, aircraft operators are requesting more flexibility to fly according to their prefer- ences, in order to achieve their business objectives. Due to this reason, much research effort is being invested in developing different techniques which evaluate aircraft optimal trajectory and traffic synchronisation. Also, the inefficient use of the airspace using barometric altitude overall in the landing and takeoff phases or in Continuous Descent Approach (CDA) trajectories where currently it is necessary introduce the necessary reference setting (QNH or QFE). To solve this problem and to permit a better airspace management born the interest of this research. Where the main goals will be to evaluate the impact, weakness and strength of the use of geometrical altitude instead of the use of barometric altitude. Moreover, this dissertation propose the design a simplified trajectory simulator which is able to predict aircraft trajectories. The model is based on a three degrees of freedom aircraft point mass model that can adapt aircraft performance data from Base of Aircraft Data, and meteorological information. A feature of this trajectory simulator is to support the improvement of the strategic and pre-tactical trajectory planning in the future Air Traffic Management. To this end, the error of the tool (aircraft Trajectory Simulator) is measured by comparing its performance variables with actual flown trajectories obtained from Flight Data Recorder information. The trajectory simulator is validated by analysing the performance of different type of aircraft and considering different routes. A fuel consumption estimation error was identified and a correction is proposed for each type of aircraft model. In the future Air Traffic Management (ATM) system, the trajectory becomes the fundamental element of a new set of operating procedures collectively referred to as Trajectory-Based Operations (TBO). Thus, governmental institutions, academia, and industry have shown a renewed interest for the application of trajectory optimisation techniques in com- mercial aviation. The trajectory optimisation problem can be solved using optimal control methods. In this research we present and discuss the existing methods for solving optimal control problems focusing on direct collocation, which has received recent attention by the scientific community. In particular, two families of collocation methods are analysed, i.e., Hermite-Legendre-Gauss-Lobatto collocation and the pseudospectral collocation. They are first compared based on a benchmark case study: the minimum fuel trajectory problem with fixed arrival time. For the sake of scalability to more realistic problems, the different meth- ods are also tested based on a real Airbus 319 El Cairo-Madrid flight. Results show that pseudospectral collocation, which has shown to be numerically more accurate and computa- tionally much faster, is suitable for the type of problems arising in trajectory optimisation with application to ATM. Fast and accurate optimal trajectory can contribute properly to achieve the new challenges of the future ATM. As atmosphere uncertainties are one of the most important issues in the trajectory plan- ning, the final objective of this dissertation is to have a magnitude order of how different is the fuel consumption under different atmosphere condition. Is important to note that in the strategic phase planning the optimal trajectories are determined by meteorological predictions which differ from the moment of the flight. The optimal trajectories have shown savings of at least 500 [kg] in the majority of the atmosphere condition (different pressure, and temperature at Mean Sea Level, and different lapse rate temperature) with respect to the conventional procedure simulated at the same atmosphere condition.This results show that the implementation of optimal profiles are beneficial under the current Air traffic Management (ATM).
Resumo:
Pumped storage hydro plants (PSHP) can provide adequate energy storage and frequency regulation capacities in isolated power systems having significant renewable energy resources. Due to its high wind and solar potential, several plans have been developed for La Palma Island in the Canary archipelago, aimed at increasing the penetration of these energy sources. In this paper, the performance of the frequency control of La Palma power system is assessed, when the demand is supplied by the available wind and solar generation with the support of a PSHP which has been predesigned for this purpose. The frequency regulation is provided exclusively by the PSHP. Due to topographic and environmental constraints, this plant has a long tail-race tunnel without a surge tank. In this configuration, the effects of pressure waves cannot be neglected and, therefore, usual recommendations for PID governor tuning provide poor performance. A PI governor tuning criterion is proposed for the hydro plant and compared with other criteria according to several performance indices. Several scenarios considering solar and wind energy penetration have been simulated to check the plant response using the proposed criterion. This tuning of the PI governor maintains La Palma system frequency within grid code requirements.
Resumo:
Acknowledgements The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council, (ii) National Natural Science Foundation of China (Grant no. U1334201) and (iii) UK Engineering and Physical Sciences Research Council (Grant no. EP/G069441/1).
Resumo:
The optimal integration between heat and work may significantly reduce the energy demand and consequently the process cost. This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs) in which the pressure levels of the process streams can be adjusted to enhance the heat integration. A superstructure is proposed for the HEN design with pressure recovery, developed via generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation. The process conditions (stream temperature and pressure) must be optimized. Furthermore, the approach allows for coupling of the turbines and compressors and selection of the turbines and valves to minimize the total annualized cost, which consists of the operational and capital expenses. The model is tested for its applicability in three case studies, including a cryogenic application. The results indicate that the energy integration reduces the quantity of utilities required, thus decreasing the overall cost.
Resumo:
Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.