923 resultados para Pre-tensioning Structural Design
Resumo:
Tässä työssä on tutkittu prosessipuhaltimena käytettävän keskipakoispuhaltimen lujuusteknistä mitoitusta. Työn tavoitteena on ollut luoda analyyttisiä laskentakaavoja Koja Oy:n käyttöön tulevaisuuden tuotekehityksen tueksi. Tavoitteena on ollut tutkia myös siipien ja etu- ja takalevyn kiinnityshitsejä ja antaa työkaluja siipipyörän väsymismitoitukseen. Kirjallisuuskatkauksessa löytyi muutamia raportoituja tapauksia, jossa keskipakoispuhallin on vaurioitunut käytön aikana. Yhtenäisenä tekijänä kaikille tapauksille on ollut hitsausliitoksen väsyminen. Väsyttävän kuormituksen raportoiduissa tapauksissa on aiheuttanut siipipyörän värähtely. Väsyminen on alkanut siiven kiinnitysliitoksista hitsin rajaviivalta, siipipyörän ulkokehältä. Siipipyörän analysointiin on käytetty analyyttisiä laskentakaavoja ja elementtimenetelmää. Analyyttisten laskentakaavojen tuottaminen on muuten monimutkaiselle rakenteelle hyvin työlästä ja aikaa vievää. Staattisessa tarkastelussa elementtimenetelmällä siipipyörän mallintamiseen on käytetty keskipintamallia. Lisäksi laskentatiedostojen kokoa on pystytty rajaamaan syklisesti symmetrisen rakenteen ansiosta. Siipipyörän väsymistarkastelu on suoritettu tehollisen lovijännityksen menetelmällä, jossa tarkasteltavan hitsin rajaviivoille ja juureen on elementtimenetelmässä mallinnettu r=1 mm suuruinen lovi, josta jännityksen on luettu. Elementtimenetelmässä laskentaohjelmistona on käytetty Abaqus 6.14.1 -laskentaohjelmistoa. Analyyttisten laskentakaavojen kehityksessä on päästy hyvin lähelle elementtimenetelmästä saatuja vastaavia tuloksia. Analyyttisten kaavojen antamat tulokset eroavat kuitenkin sen verran virhettä, että varsinainen tarkka laskenta on syytä suorittaa ennen lopullisen konstruktion määrittämistä. Tehollisella lovijännitysmenetelmällä on saatu määritettyä rakenteen kriittisin kohta, jonka kestoikä on 36 400 sykliä. Tutkimuksen pohjalta Koja Oy on saanut hyvät edellytykset jatkaa tutkimusta lopun tuoteperheen parantamiseen.
Resumo:
Humans use their grammatical knowledge in more than one way. On one hand, they use it to understand what others say. On the other hand, they use it to say what they want to convey to others (or to themselves). In either case, they need to assemble the structure of sentences in a systematic fashion, in accordance with the grammar of their language. Despite the fact that the structures that comprehenders and speakers assemble are systematic in an identical fashion (i.e., obey the same grammatical constraints), the two ‘modes’ of assembling sentence structures might or might not be performed by the same cognitive mechanisms. Currently, the field of psycholinguistics implicitly adopts the position that they are supported by different cognitive mechanisms, as evident from the fact that most psycholinguistic models seek to explain either comprehension or production phenomena. The potential existence of two independent cognitive systems underlying linguistic performance doubles the problem of linking the theory of linguistic knowledge and the theory of linguistic performance, making the integration of linguistics and psycholinguistic harder. This thesis thus aims to unify the structure building system in comprehension, i.e., parser, and the structure building system in production, i.e., generator, into one, so that the linking theory between knowledge and performance can also be unified into one. I will discuss and unify both existing and new data pertaining to how structures are assembled in understanding and speaking, and attempt to show that the unification between parsing and generation is at least a plausible research enterprise. In Chapter 1, I will discuss the previous and current views on how parsing and generation are related to each other. I will outline the challenges for the current view that the parser and the generator are the same cognitive mechanism. This single system view is discussed and evaluated in the rest of the chapters. In Chapter 2, I will present new experimental evidence suggesting that the grain size of the pre-compiled structural units (henceforth simply structural units) is rather small, contrary to some models of sentence production. In particular, I will show that the internal structure of the verb phrase in a ditransitive sentence (e.g., The chef is donating the book to the monk) is not specified at the onset of speech, but is specified before the first internal argument (the book) needs to be uttered. I will also show that this timing of structural processes with respect to the verb phrase structure is earlier than the lexical processes of verb internal arguments. These two results in concert show that the size of structure building units in sentence production is rather small, contrary to some models of sentence production, yet structural processes still precede lexical processes. I argue that this view of generation resembles the widely accepted model of parsing that utilizes both top-down and bottom-up structure building procedures. In Chapter 3, I will present new experimental evidence suggesting that the structural representation strongly constrains the subsequent lexical processes. In particular, I will show that conceptually similar lexical items interfere with each other only when they share the same syntactic category in sentence production. The mechanism that I call syntactic gating, will be proposed, and this mechanism characterizes how the structural and lexical processes interact in generation. I will present two Event Related Potential (ERP) experiments that show that the lexical retrieval in (predictive) comprehension is also constrained by syntactic categories. I will argue that the syntactic gating mechanism is operative both in parsing and generation, and that the interaction between structural and lexical processes in both parsing and generation can be characterized in the same fashion. In Chapter 4, I will present a series of experiments examining the timing at which verbs’ lexical representations are planned in sentence production. It will be shown that verbs are planned before the articulation of their internal arguments, regardless of the target language (Japanese or English) and regardless of the sentence type (active object-initial sentence in Japanese, passive sentences in English, and unaccusative sentences in English). I will discuss how this result sheds light on the notion of incrementality in generation. In Chapter 5, I will synthesize the experimental findings presented in this thesis and in previous research to address the challenges to the single system view I outlined in Chapter 1. I will then conclude by presenting a preliminary single system model that can potentially capture both the key sentence comprehension and sentence production data without assuming distinct mechanisms for each.
Resumo:
This thesis presents a set of novel methods to biaxially package planar structures by folding and wrapping. The structure is divided into strips connected by folds that can slip during wrapping to accommodate material thickness. These packaging schemes are highly efficient, with theoretical packaging efficiencies approaching 100%. Packaging tests on meter-scale physical models have demonstrated packaging efficiencies of up to 83%. These methods avoid permanent deformation of the structure, allowing an initially flat structure to be deployed to a flat state.
Also presented are structural architectures and deployment schemes that are compatible with these packaging methods. These structural architectures use either in-plane pretension -- suitable for membrane structures -- or out-of-plane bending stiffness to resist loading. Physical models are constructed to realize these structural architectures. The deployment of these types of structures is shown to be controllable and repeatable by conducting experiments on lab-scale models.
These packaging methods, structural architectures, and deployment schemes are applicable to a variety of spacecraft structures such as solar power arrays, solar sails, antenna arrays, and drag sails; they have the potential to enable larger variants of these structures while reducing the packaging volume required. In this thesis, these methods are applied to the preliminary structural design of a space solar power satellite. This deployable spacecraft, measuring 60 m x 60 m, can be packaged into a cylinder measuring 1.5 m in height and 1 m in diameter. It can be deployed to a flat configuration, where it acts as a stiff lightweight support framework for multifunctional tiles that collect sunlight, generate electric power, and transmit it to a ground station on Earth.
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
This paper discusses the integrated design of parallel manipulators, which exhibit varying dynamics. This characteristic affects the machine stability and performance. The design methodology consists of four main steps: (i) the system modeling using flexible multibody technique, (ii) the synthesis of reduced-order models suitable for control design, (iii) the systematic flexible model-based input signal design, and (iv) the evaluation of some possible machine designs. The novelty in this methodology is to take structural flexibilities into consideration during the input signal design; therefore, enhancing the standard design process which mainly considers rigid bodies dynamics. The potential of the proposed strategy is exploited for the design evaluation of a two degree-of-freedom high-speed parallel manipulator. The results are experimentally validated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The simultaneous design of the steady-state and dynamic performance of a process has the ability to satisfy much more demanding dynamic performance criteria than the design of dynamics only by the connection of a control system. A method for designing process dynamics based on the use of a linearised systems' eigenvalues has been developed. The eigenvalues are associated with system states using the unit perturbation spectral resolution (UPSR), characterising the dynamics of each state. The design method uses a homotopy approach to determine a final design which satisfies both steady-state and dynamic performance criteria. A highly interacting single stage forced circulation evaporator system, including control loops, was designed by this method with the goal of reducing the time taken for the liquid composition to reach steady-state. Initially the system was successfully redesigned to speed up the eigenvalue associated with the liquid composition state, but this did not result in an improved startup performance. Further analysis showed that the integral action of the composition controller was the source of the limiting eigenvalue. Design changes made to speed up this eigenvalue did result in an improved startup performance. The proposed approach provides a structured way to address the design-control interface, giving significant insight into the dynamic behaviour of the system such that a systematic design or redesign of an existing system can be undertaken with confidence.
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
The design of anchorage blisters of internal continuity post-tensioning tendons of bridges built by the cantilever method, presents some peculiarities, not only because they are intermediate anchorages but also because these anchorages are located in blisters, so the prestressing force has to be transferred from the blister the bottom slab and web of the girder. The high density of steel reinforcement in anchorage blisters is the most common reason for problems with concrete cast in situ, resulting in zones with low concrete compacity, leading to concrete crushing failures under the anchor plates. A solution may involve improving the concrete compression and tensile strength. To meet these requirements a high-performance fibre reinforced self-compacting mix- ture (HPFRC) was used in anchorage corner blisters of post-tensioning tendons, reducing the concrete cross-section and decreasing the reinforcement needed. To assess the ultimate capacity and the adequate serviceability of the local anchorage zone after reducing the minimum concrete cross-section and the confining reinforcement, specified by the anchorage device supplier for the particular tendon, load transfer tests were performed. To investigate the behaviour of anchorage blisters regarding the transmission of stresses to the web and the bottom slab of the girder, and the feasibility of using high performance concrete only in the blister, two half scale models of the inferior corner of a box girder existing bridge were studied: a reference specimen of ordinary reinforced concrete and a HPFRC blister specimen. The design of the reinforcement was based in the tensile forces obtained on strut-and-tie models. An experimental program was carried out to assess the models used in design and to study the feasibility of using high performance concrete only in the blister, either with casting in situ, or with precast solutions. A non-linear finite element analysis of the tested specimens was also performed and the results compared.
Resumo:
The growing need to patrol and survey large maritime and terrestrial areas increased the need to integrate external sensors on aircraft in order to accomplish those patrols at increasingly higher altitudes, longer range and not depending upon vehicle type. The main focus of this work is to elaborate a practical, simple, effective and efficient methodology for the aircraft modification procedure resulting from the integration of an Elec-tro-Optical/Infra-Red (EO/IR) turret through a support structure. The importance of the devel-opment of a good methodology relies on the correct management of project variables as time, available resources and project complexity. The key is to deliver a proper tool for a project de-sign team that will be used to create a solution that fulfils all technical, non-technical and certi-fication requirements present in this field of transportation. The created methodology is inde-pendent of two main inputs: sensor model and aircraft model definition, and therefore it is in-tended to deliver the results for different projects besides the one that was presented in this work as a case study. This particular case study presents the development of a structure support for FLIR STAR SAPHIRE III turret integration on the front lower fuselage bulkhead (radome) of the LOCKHEED MARTIN C-130 H. Development of the case study focuses on the study of local structural analysis through the use of Finite Element Method (FEM). Development of this Dissertation resulted in a cooperation between Faculty of Science and Technology - Universidade Nova de Lisboa and the company OGMA - Indústria Aeronáutica de Portugal
Resumo:
By taking advantage of the appropriate use of cement and polymer based materials and advanced computational tools, a pre-fabricated affordable house was built in a modular system. Modular system refers to the complete structure that is built-up by assembling pre-fabricated sandwich panels composed of steel fibre reinforced self-compacting concrete (SFRSCC) outer layers that are connected by innovative glass fibre reinforced polymer (GFRP) connectors, resulting in a panel with adequate structural, acoustic, and thermal insulation properties. The modular house was prepared for a typical family of six members, but its living area can be easily increased by assembling other pre-fabricated elements. The speed of construction and the cost of the constructive elements make these houses competitive when compared to traditional solutions. In this paper the relevant research subjacent to this project (LEGOUSE) is briefly described, as well as the construction process of the built real scale prototype.
Resumo:
Fibre reinforced thermoplastic pre impregnated materials produced continuously by diverse methods and processing conditions were used to produce composites using pultrusion. The processing windows used to produce these materials and composites profiles were optimized by using the Taguchi / DOE (Design of Experiments) methods. Composites were manufactured by pultrusion and compression moulding and subsequently submitted to mechanical testing and microscopy analysis. The obtained results were compared with the expected theoretical ones predicted from the Rule of Mixtures (ROM) and with those of similar engineering conventional available materials. The results obtained shown that produced composites have adequate properties for applications in common and structural engineering markets.
Resumo:
The authors have post-tensioned and monitored two Iowa bridges and have field tested the post-tensioning of a composite bridge in Florida. In order to provide the practical post-tensioning distribution factors given in this manual, the authors developed a finite element model of a composite bridge and checked the model against a one-half scale laboratory bridge and two actual composite bridges, one of which had a 45 deg skew. Following a brief discussion of this background research, this manual explains the use of elastic, composite beam and bridge section properties, the distribution fractions for symmetrically post-tensioned exterior beams, and a method for computing the strength of a post-tensioned beam. Also included is a design example for a typical, 51.25-ft (15.62-m) span, four-beam composite bridge. Moments for Iowa Department of Transportation rating trucks, H 20 and HS 20 trucks, have been tabulated for design convenience and are included in the appendix.
Resumo:
Culverts are common means to convey flow through the roadway system for small streams. In general, larger flows and road embankment heights entail the use of multibarrel culverts (a.k.a. multi-box) culverts. Box culverts are generally designed to handle events with a 50-year return period, and therefore convey considerably lower flows much of the time. While there are no issues with conveying high flows, many multi-box culverts in Iowa pose a significant problem related to sedimentation. The highly erosive Iowa soils can easily lead to the situation that some of the barrels can silt-in early after their construction, becoming partially filled with sediment in few years. Silting can reduce considerably the capacity of the culvert to handle larger flow events. Phase I of this Iowa Highway Research Board project (TR-545) led to an innovative solution for preventing sedimentation. The solution was comprehensively investigated through laboratory experiments and numerical modeling aimed at screening design alternatives and testing their hydraulic and sediment conveyance performance. Following this study phase, the Technical Advisory Committee suggested to implement the recommended sediment mitigation design to a field site. The site selected for implementation was a 3-box culvert crossing Willow Creek on IA Hwy 1W in Iowa City. The culvert was constructed in 1981 and the first cleanup was needed in 2000. Phase II of the TR 545 entailed the monitoring of the site with and without the selfcleaning sedimentation structure in place (similarly with the study conducted in laboratory). The first monitoring stage (Sept 2010 to December 2012) was aimed at providing a baseline for the operation of the as-designed culvert. In order to support Phase II research, a cleanup of the IA Hwy 1W culvert was conducted in September 2011. Subsequently, a monitoring program was initiated to document the sedimentation produced by individual and multiple storms propagating through the culvert. The first two years of monitoring showed inception of the sedimentation in the first spring following the cleanup. Sedimentation continued to increase throughout the monitoring program following the depositional patterns observed in the laboratory tests and those documented in the pre-cleaning surveys. The second part of Phase II of the study was aimed at monitoring the constructed self-cleaning structure. Since its construction in December 2012, the culvert site was continuously monitored through systematic observations. The evidence garnered in this phase of the study demonstrates the good performance of the self-cleaning structure in mitigating the sediment deposition at culverts. Besides their beneficial role in sediment mitigation, the designed self-cleaning structures maintain a clean and clear area upstream the culvert, keep a healthy flow through the central barrel offering hydraulic and aquatic habitat similar with that in the undisturbed stream reaches upstream and downstream the culvert. It can be concluded that the proposed self-cleaning structural solution “streamlines” the area upstream the culvert in a way that secures the safety of the culvert structure at high flows while producing much less disturbance in the stream behavior compared with the current constructive approaches.