989 resultados para Power Laws (PL)
Resumo:
This study investigated the effects of bromazepam on qEEG when 14 healthy subjects were asked to perform a visuomotor task (i.e., motor vehicle driving task). The subjects were exposed to two experimental conditions: the placebo (PL) and 6 mg of bromazepam (Br 6 mg), following a randomized, double-blind design on different days. Specifically, we observe absolute power extracted from qEEG data for theta band. We expected to see a decrease in absolute theta power in the temporal and parietal areas due to the influence of bromazepam for the experimental group when compared with the placebo group. We found a main effect for the condition factor for electrodes T3, T4, P3 and P4. We also observed a main effect for the period factor for electrodes P3 and P4. We observed that the ingestion of 6 mg of bromazepam induces different patterns in theta power at the temporal and parietal sites. We concluded that 6 mg of bromazepam was an important factor in the fluctuation of the activities in the temporal and parietal areas. We then hypothesize about the specific role of this drug during the execution of a visuomotor task and within the sensorimotor integration process. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the influence of bromazepam on EEG and the motor learning process when healthy subjects were submitted to a typewriting task. We investigated bromazepam due to its abuse by various populations and its prevalent clinical use among older individuals which are more sensitive to the negative effects of long half-life benzodiazepines. A randomized double-blind design was used with subjects divided into three groups: placebo (n = 13), bromazepam 3 mg (n = 13) and bromazepam 6 mg (n = 13). EEG data comprising theta, alpha and beta bands was recorded before, during and after the motor task. Our results showed a lower relative power value in the theta band in the Br 6 mg group when compared with PL. We also observed a reduction in relative power in the beta band in the Br 3 mg and Br 6 mg when compared with PL group. These findings suggest that Br can contribute to a reduced working memory load in areas related to attention processes. On the other hand, it produces a higher cortical activation in areas associated with sensory integration. Such areas are responsible for accomplishing the motor learning task. The results are an example of the usefulness of integrating electrophysiological data, sensorimotor activity and a pharmacological approach to aid in our understanding of cerebral changes produced by external agents. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Peripheral nerves are structures that, when damaged, can result in significant motor and sensory disabilities. Several studies have used therapeutic resources with the aim of promoting early nerve regeneration, such as the use of low-power laser. However, this laser therapy does not represent a consensus regarding the methodology, thus yielding controversial conclusions. The objective of our study was to investigate, by functional evaluation, the comparative effects of low-power laser (660 nm and 830 nm) on sciatic nerve regeneration following crushing injuries. Twenty-seven Wistar rats subjected to sciatic nerve injury were divided into three groups: group sham, consisting of rats undergoing simulated irradiation; a group consisting of rats subjected to gallium-aluminum-arsenide (GaAlAs) laser at 660 nm (10 J/cm(2), 30 mW and 0.06 cm(2) beam), and another one consisting of rats subjected to GaAlAs laser at 830 nm (10 J/cm(2), 30 mW and 0.116 cm(2)). Laser was applied to the lesion for 21 days. A sciatic functional index (SFI) was used for functional evaluation prior to surgery and on days 7, 14, and 21 after surgery. Differences in SFI were found between group 660 nm and the other ones at the 14th day. One can observe that laser application at 660 nm with the parameters and methods utilised was effective in promoting early functional recovery, as indicated by the SFI, over the period evaluated.
Resumo:
Objective: To study the influence of low power GaAsAl laser irradiation on the regeneration of a peripheral nerve, following a controlled crush injury. Material and methods: The right common fibular nerve of 30 Wistar rats was submitted to a crush injury with an adjustable load forceps (5 000 g, 10 minutes of application). The animals were divided into three groups (n=10), according to the postoperative procedure (no irradiation; sham irradiation; effective irradiation). Laser irradiation (830 nm wave-length; 100 mW emission power; continuous mode; 140 J/cm(2)) was started on the first postoperative day and continued over 21 consecutive days. Body mass, time spent on the walking track and functional peroneal index (PFI) were analyzed based on the hind footprints, both preoperatively and on the 21st postoperative day. Results: Walking time and PFI significantly improved in the group that received effective laser irradiation, despite the significant gain in body mass between the pre- and post-operative periods. Conclusion: Low Power GaAsAl laser irradiation, with the parameters used in our study, accelerated and improved fibular nerve regeneration in rats.