914 resultados para Powder metallurgy. Nickel. Alloy carrier. Silicon carbide and silicon nitride
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The machining of super alloys resistant to high temperatures such as nickel alloys, inconel 718 specifically, is a very difficult job to obtain improvements in the process, due to the difficulty of machining at high cutting speeds, the use of these alloys in industries showed great developments in recent years, its application in aeronautical industry spread being used in vane turbo, compressor parts, props and set elements. The automotive, chemical, medical and others also took advantage of the great features of inconel 718 and has used the material. The high temperature resistant alloys have high machining difficulty, a fact that is associated with high cutting forces generated during machining which result in high temperatures. High levels of temperatures can cause deterioration of the cutting edge, with subsequent deformation or breakage, wear most common obtained in machining such materials are flank wear the formation of built-up edge for cutting and notch wear. The experimental part of the work consists in machining of nickel-based alloy Inconel 718 heat treated for hardness, using a tool based ceramic silicon nitride Sandvik (Si3N4) in order to compare the best results obtained in the master's thesis of SANTOS (2010) who used a tool ceramics also the basis of silicon nitride which was developed in the doctoral thesis of SOUZA (2005). Assays were performed on a CNC lathe and was noted for each cutting edge results obtained. Tests were made starting from an initial condition of the tool with cutting speed of 200 m/min, feed 0.5 mm and 0.5 mm depth of cut was reduced cutting speed for the subsequent tests with the same conditions of feed and depth of cut. The tool presented wear instant under two 200 m/min and 100 m/min, premature rupture of 50 m/min and finally cut provided with difficulty... (Complete abstract click electronic access below)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: This study evaluated the flow, pH and calcium release of MTA Fillapex (G1) or Fillapex plus 10% in weight of calcium hydroxide powder (G2), compared to AH Plus (G3) and Sealapex (G4). Materials and methods:The flow test was performed according to ISO 6876:2001 requirements. The sealers were placed into plastic tubes and immersed in deionized water. After 24 hours, 7, 14 and 28 days, the water of each tube was removed and tested to evaluate the pH values and the level of released calcium. Calcium release values were analyzed statistically by Kruskal Wallis and Dunn tests and pH values analyzed by ANOVA and Tukey tests (? = 5%). Results:G1 presented higher flow among all sealers. The addition of 10% calcium hydroxide into MTA Fillapex reduced the flow (p < 0.05) but, in a level, that is lower than the one recommended for ISO norms. G2 and G4 presented pH values and calcium release higher than G3 (p < 0.05) in all periods. G1 presented pH value higher than G3 (p < 0.05), except in 7 days period (p > 0.05). G4 presented higher pH values than G1 and G2, but the calcium release was similar for all periods (p > 0.05). G3 presented lower calcium release among all groups (p < 0.05). Conclusion: The addition of 10% calcium hydroxide in MTA Fillapex caused reduction in flow and no negative interference in pH and/or calcium release. However, the obtained flow is different from ISO requirements. Clinical relevance: MTA Fillapex presents levels of flow above the ISO norms. The addition of calcium hydroxide is a suggestion for solving this problem, but the impact of these procedures should be carefully evaluated.
Resumo:
In this work, the energy response functions of Si(Li), SDD and CdTe detectors were studied in the mammographic energy range through Monte Carlo simulation. The code was modified to take into account carrier transport effects and the finite detector energy resolution. The results obtained show that all detectors exhibit good energy response at low energies. The most important corrections for each detector were discussed, and the corrected mammographic x-ray spectra obtained with each one were compared. Results showed that all detectors provided similar corrected spectra, and, therefore, they could be used to accurate mammographic x-ray spectroscopy. Nevertheless, the SDD is particularly suitable for clinic mammographic x-ray spectroscopy due to the easier correction procedure and portability. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Cutting tools with higher wear resistance are those manufactured by powder metallurgy process, which combines the development of materials and design properties, features of shape-making technology and sintering. The annual global market of cutting tools consumes about US$ 12 billion; therefore, any research to improve tool designs and machining process techniques adds value or reduces costs. The aim is to describe the Spark Plasma Sintering (SPS) of cutting tools in functionally gradient materials, to show this structure design suitability through thermal residual stress model and, lastly, to present two kinds of inserts. For this, three cutting tool materials were used (Al2O3-ZrO2, Al2O3-TiC and WC-Co). The samples were sintered by SPS at 1300 °C and 70 MPa. The results showed that mechanical and thermal displacements may be separated during thermal treatment for analysis. Besides, the absence of cracks indicated coherence between experimental results and the residual stresses predicted.
Resumo:
The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.
Resumo:
The fracture properties of high-strength spray-formed Al alloys were investigated, with consideration of the effects of elemental additions such as zinc,manganese, and chromium and the influence of the addition of SiC particulate. Fracture resistance values between 13.6 and 25.6 MPa (m)1/2 were obtained for the monolithic alloys in the T6 and T7 conditions, respectively. The alloys with SiC particulate compared well and achieved fracture resistance values between 18.7 and 25.6 MPa (m)1/2. The spray-formed materials exhibited a loss in fracture resistance (KI) compared to ingot metallurgy 7075 alloys but had an improvedperformance compared to high-solute powder metallurgy alloys of similar composition. Characterization of the fracture surfaces indicated a predominantly intergranular decohesion, possibly facilitated by the presence of incoherent particles at the grain boundary regions and by the large strength differentialbetween the matrix and precipitate zone. It is believed that at the slip band-grain boundary intersection, particularly in the presence of large dispersoids and/or inclusions, microvoid nucleation would be significantly enhanced. Differences in fracture surfaces between the alloys in the T6 and T7 condition were observed and are attributed to inhomogeneous slip distribution, which results in strain localization at grain boundaries. The best overall combination of fracture resistance properties were obtained for alloys with minimum amounts of chromium and manganese additions.
Resumo:
A modified Astra type multistage liquid impinger (MSLI) with integrated bronchial cell monolayers was used to study deposition and subsequent drug absorption on in vitro models of the human airway epithelial barrier. Inverted cell culture of Calu-3 cells on the bottom side of cell culture filter inserts was integrated into a compendial MSLI. Upside down cultivation did not impair the barrier function, morphology and viability of Calu-3 cells. Size selective deposition with subsequent absorption was studied for three different commercially available dry powder formulations of salbutamol sulphate and budesonide. After deposition without size separation the absorption rates from the aerosol formulations differed but correlated with the size of the carrier lactose particles. However, after deposition in the MSLI, simulating relevant impaction and causing the separation of small drug crystals from the carrier lactose, the absorption rates of the three formulations were identical, confirming the bioequivalence of the three formulations.
Resumo:
It is known that the electrical resistance of annealed metals is usually smaller than that of metals in their cold worked state. The curve showing the relation between electrical resistance and annealing temperature reaches a minimum; continued annealing at higher temperature produces an increase in the electrical resistance. In the case of alloys it has been noted that a second decrease occurs at higher annealing temperature. The following work corroborates the observance of previous investigations. The electrical resistance of cold worked copper, gold, nickel, and iron decreased with annealing and then increased, the minimum being around 300° C. or 400° C. Monel metal showed a minimum resistance followed by an increase which in turn was followed by a second decrease.
Resumo:
Many investigations have shown that the electrical resistance of soft annealed metals is usually smaller than that of metals in their hard, cold worked state. By annealing cold-worked metals, the electrical resistance decreases to a minimum and then increases upon continued annealing at higher temperatures. The work performed in this investigation upon silver, aluminum, copper, nickel, and soft steel corroborates this idea.