902 resultados para Polymer Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary objective of this investigation has been to develop more efficient and low cost adhesives for bonding various elastomer combinations particularly NR to NR, NR/PB to NR/PB, CR to CR,NR to CR and NR to NBR.A significant achievement of the investigation was the development of solventless and environment friendly solid adhesives for NR to NR and NR/PB to NR/PB particularly for precured retreading. Conventionally used adhesives in this area are mostly NR based adhesive strips in the presence of a dough. The study has shown that an ultra accelerator could be added to the dough just before applying it on the tire which can significantly bring down the retreading time resulting in prolonged tire service and lower energy consumption. Further latex reclaim has been used for the preparation of the solid strip which can reduce the cost considerably.Another significant finding was that by making proper selection of the RF resin, the efficiency and shelflife of the RFL adhesive used for nylon and rayon tire cord dipping can be improved. In the conventionally used RFL adhesive, the resin once prepared has to be added to the latex within 30 minutes and the RFL has to be used after 4 hours maturation time maximum shelf life of the RFL dip solution being 72 hours. In this study a formaldehyde deficient resin was used and hence more flexibility was available for mixing with latex and maturing. It also has a much longer shelf life. In the method suggested in this study, formaldehyde donors were added only in the rubber compound to make up the formaldehyde deficiency in the RFL. The results of this investigation show that the pull through load by employing this method and the conventional method are comparable. This study has also shown that the amount of RF resin with RFL adhesive can be partially replaced by other modifying agents for cost reduction.Cashew nut shell liquid (CNSL) resin can be employed for improving the bonding of dipped nylon and rayon cord with NR.Since CNSL resin cannot be added in the dip solution since it is not soluble in water, it was added in the rubber compound. The amount of wood rosin in the rubber compound can be reduced by using CNSL resin.Another interesting result of the investigation was the use of CR based adhesive modified with chlorinated natural rubber for CR to CR bonding. Addition of chlorinated natural rubber was found to improve sea water resistance of CR based adhesive. In the bonding of a polar rubber like nitrile rubber or polychloroprene rubber to a non polar rubber like natural rubber, an adhesive based on polychloroprene rubber was found to be effective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dept. of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aim of the study was to optimise the reactive extrusion conditions in the conventional modification processes of polyethylenes in a single screw extruder.The optimum conditions for peroxide crosslinking of low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and their blend were determined in a torque rheometer. The actual reactive extrusion was performed in a laboratory single screw extruder using the optimum parameters. The influence of the coagent, triaUyl cyanurate (TAC), on the cross linking of low density polyethylene in the presence of peroxide was also investigated. The peroxide crosslinking was found to improve the mechanical properties and the thermal stability of the polyethylenes. The efficiency of crosslinking was found to be improved by the addition of coagent such as TAC.The optimum conditions for silane grafting viz temperature, shear rate, silane and DCP concentrations were determined on a torque rheometer in the case of LDPE, LLDPE and their blend. Silane grafting of LDPE in the presence of peroxide was performed with and without addition of water. Compounding of such mixtures in the melt at high temperatures caused decomposition of the peroxide and grafting of alkoxy silyl groups to the polyethylene chains.The optimum parameters for maleic anhydride modification of LDPE, LLDPE and their blend were determined. The grafting reaction was confinned by FTIR spectroscopy. Modification of polyethylenes with maleic anhydride in the presence of dicumyl peroxide was found to be useful in improving mechanical properties. The improvement was found to be mainly due to the grafting of carboxyl group and formation of crosslinks between the chains. The cross linking initiated improvements indicate extended property profiles and new application fields for polyethylenes.On the whole the study shows that the optimum conditions for modifying polyethylenes can be determined on a torque rheometer and actual modification can be performed in a single screw extruder by employing the optimum parameters for improved mechanical! thermal behaviour without seriously affecting their processing behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study the preparation and characterisation of rubber ferrite composites (RFC) containing barium ferrite (BaF) and strontium ferrite (SrF) have been dealt with. The incorporation of the hard ferrites into natural and nitrile rubber was carried out according to a specific recipe for various loadings of magnetic fillers. For this, the ferrite materials namely barium ferrite and strontium ferrite having the general formula MO6Fe2O3 have been prepared by the conventional ceramic techniques. After characterisation they were incorporated into the natural and nitrile rubber matrix by mechanical method. Carbon black was also incorporated at different loading into the rubber ferrite composites to study its effect on various properties. The cure characteristics, mechanical, dielectric and magnetic properties of these composites were evaluated. The ac electrical conductivity of both the ceramic ferrites and rubber ferrite composites were also calculated using a simple relation. The investigations revealed that the rubber ferrite composites with the required dielectric and magnetic properties can be obtained by the incorporation of ferrite fillers into the rubber matrix, without compromising much on the processability and mechanical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents the findings of a study on incorporating vanous thermoset resins into natural rubber for property improvement. Natural rubber is an important elastomer with the unique attribute of being a renewable agricultural product. The study was undertaken to investigate the extent to which the drawbacks of natural rubber, especially its poor thermal and oil resistance propel1ies could be nullified by blending with common thermoset resins. A thorough and comparative understanding of the perfonnance of different resins from this viewpoint will be beneficial for both natural IUbber processors and consumers. In this study the thennoset resins used were epoxy resin, phenolics, epoxidised phenolics and unsaturated polyester resin.The resins were incorporated into NR during compounding and their effects on the properties of NR were studied after vulcanization. Properties were studied for both gum and filled N R compounds. The important properties studied are cure characteristics, mechanical properties, ageing propel1ies, thermal propel1ies, crosslink density and extractability. Characterization studies were also conducted using FTIR, TGA and DSC.Improvement in mechanical properties was noticed in many cases. The results show that most resins lead to a reduction in the cure time of NR. The perfonnance of epoxy resin is most noticeable in this respect. Mechanical properties of the modified IUbber show maximum improvement in the case of epoxidised novolacs. Most resins are seen to improve the thermal and oil resistance propel1ies of NR. Epoxy novolacs show maximum effect in this respect also. However the presence of tillers is found to moderate the positive effects of the thermoset resins considerably.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology,Cochin University of Science and Technology

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study aims at the preparation of an ABS (acrylonitrile-butadiene-styrene) type toughened thermoplastic by melt blending polystyrene (PS) and powdered nitrile rubber (NBR). The product is an interesting class of toughened thermoplastic, which would combine the superior mechanical and processing characteristics of PS and the excellent oil-resistant properties of NBR. In this thesis an attempt has been made to investigate systematically the effect of compatibilisation and dynamic vulcanisation on the morphology and properties of powdered nitrile rubber toughened polystyrene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work focuses on the modification of the commonly used thermoplastics, polypropylene and polystyrene using nanosilica preparcd from a cheap source of sodium silicate. Melt compounding technique has been used for nanocomposite preparation as it is simple and suited to injection moulding. Nanosilica in a polymer matrix provide significant enhancement in strength, stiffness and impact strength. Incorporation of silica particles in a polymer also improves its thennal stability. To achieve better dispersion of fillers in polymer matrices the mixing was done at different shear rates. The enhancement in material properties indicates that at higher shear rates there is greater interaction between particles and the matrix and it depends on filler concentration and type of polymer used. N anosilica is a useful filler in thennoplastic polymers and has been applied in automotive applications, electronic appliances and consumer goods.This thesis is divided into six chapters. General introduction to the topic is described in chapter 1. Salient features of polymer nanocomposites, their synthesis, properties and applications are presented. A review of relevant literature and the scope and objectives are also mentioned in this chapter.The materials used and the vanous experimental method and techniques employed in the study are described in chapter 2. Preparation of nanocomposites by melt blending using Thenno Haake Rheocord, preparation of samples, evaluation of mechanical and thennal properties using UTM, Impact testing and characterization using DMA, TGA and DSC and morphology by SEM are described.The preparation of nanosilica from a laboratory scale to a pilot plant scale is described in chapter 3. Generation of surface modified silica, evaluation of kinetic parameters of the synthesis reaction, scale up of the reactor and modeling of the reactor are also dealt with in this chapter.The modification of the commodity thennoplastic, Polypropylene using nanosilica is described in chapter 4. Preparation of PP/silica nanocomposites, evaluation of mechanical properties, thermal and crystallization characteristics, water absorption and ageing resistance studies are also presented.The modification of Polystyrene using synthesized nanosilica IS described in chapter 5. The method of preparation of PS/silica nanocomposites, evaluation of mechanical properties (static and dynamic), thermal properties melt flow characteristics using Haake Rheocord, water absorption and ageing resistance of these nanocomposites are studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precipitated silica is the most promising alternative for carbon black in tyre tread compounds due to its improved performance in terms of rolling resistance and wet grip.But its poor processability is a serious limitation to its commercial application.This thesis suggests a novel route for the incorporation of silica in rubbers,i.e.,precipitation of silica in rubber latex followed by coagulation of the latex to get rubber-silica maseterbatch.Composites with in situ precipitated silica showed improved processability and mechanical properties,when compared to conventional silica composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research project explores the utilization of cardanol in various capacities for rubber processing. Cardanol is a phenol with a long side chain in the meta position of the benzene ring. It is obtained by the vacuum distillation of cashew Hut shell liquid (CNSL) which is a cheap agro-byproduct. In this study, the plasticizer property of cardanol was investigated in silica filled and HAF black filled NR, NBR, EPDM and CR by comparing cure characteristics and mechanical properties of vulcanizates containing conventional plasticizer with those containing cardanol as plasticizer. The co-activator, antioxidant and accelerator properties were investigated in gum samples of NR, NBR, EPDM and CR by comparing the properties of vulcanizates which contain conventional co-activator, antioxidant and accelerator with those in which each of them was replaced by cardanol. The general effectiveness of cardanol was investigated by determination of cure time , measurement of physical and mechanical properties, ageing studies, crosslink density, extractability, FTIR spectra, TGA etc.The results show that cardanol can be a substitute for aromatic oil in both silica filled and HAF black filled NR. Again, it can replace dioctyl phthalate in both silica filled and HAF black filled NBR. Similarly, cardanol Can replace naphthenic oil in silica filled as well as HAF black filled EPDM and CR. The cure characteristics and mechanical properties are comparable in all the eight cases. The co-activator property of cardanol is comparable to stearic acid in all the four rubbers. The cure characteristics and mechanical properties in this case are also comparable. The antioxidant ,property of cardanol is comparable to TQ in all the four rubbers. The antioxidant property of cardanol is comparable to TQ in all the four case of NBR and EPDM.The accelerator property of cardarlol is comparable with CBS in the case of NBR and EPDM. No accelerator property is observed in the case of NR. The accelerator property of cardanol in CR is not negligible when compared with TMTD.