962 resultados para Polyethylene oxides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of SrBi2Ta2O9 and related oxides such as SrBi2Nb2O9, Bi2WO6 and Bi3Ti4O12 have been calculated by the tight-binding method. In each case, the band gap is about 4.1 eV and the band edge states occur on the Bi-O layers and consist of mixed O p/Bi s states at the top of the valence band and Bi p states at the bottom of the conduction band. The main difference between the compounds is that Nb 5d and Ti 4d states in the Nb and Ti compounds lie lower than the Ta 6d states in the conduction band. The surface pinning levels are found to pin Schottky barriers 0.8 eV below the conduction band edge.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tribological properties of the high-strength and high-modulus ultrahigh molecular weight polyethylene (UHMWPE) film and the UHMWPE composites reinforced by multiwalled carbon nanotubes (MWCNT/UHMWPE) were investigated using a nanoindenter and atomic force microscope (AFM). The MWCNT/UHMWPE composites films exhibited not only high wear resistance but also a low friction coefficient compared to the pure UHMWPE films. We attribute the high wear resistance to the formation of the new microstructure in the composites due to the addition of MWCNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesis se ha centrado en la síntesis y caracterización estructural de materiales tipo perovskita: SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni,Fe) y ALn2CuTi2O9 (A=Ca,Ba; Ln=La,Pr,Nd,Sm). El estudio de las estructuras de los materiales se ha realizado mediante el análisis de los patrones de difracción en polvo de rayos-X, sincrotrón y/o neutrones. En el refinamiento por el método de Rietveld de las estructuras se han sustituido las coordenadas atómicas (el método más común), por coordenadas colectivas: las amplitudes de los modos que describen la distorsión de la fase prototipo. Los resultados generales para la serie SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni) a temperatura ambiente se ha recogido en un diagrama en el que se han indicado las amplitudes de los modos que transforman de acuerdo a las irreps en función del factor de tolerancia, ya que todos ellos cristalizan en la misma fase monoclínica (P21/n); y a temperaturas altas se ha construido un diagrama de fase. Los materiales SrLnFeRuO6 ( Ln=La,Pr,Nd) y CaLn2CuTi2O9 cristalizan en la fase ortorrómbica Pbnm a temperatura ambiente; mientras que BaLn2CuTi2O9 tienen una estructura más simétrica, I4/mcm. A altas temperaturas se han identificado las transiciones de fase inducidas por el cambio de temperatura.A temperaturas bajas se han analizado las estructuras magnéticas de algunos de los compuestos mediante difracción de neutrones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanocene metallacyclobutanes show a wide variety of reactivites with organic and inorganic reagents. Their reactions include methylene transfer to organic carbonyls, formation of enolates, electron transfer from activated alkyl chlorides, olefin metathesis, ring opening polymerization. Recently, preparations of heterobinuclear µ-methylene complexes were reported. In this thesis, mechanistic, synthetic, and structural studies of the heterobinuclear µ-methylene complexes will be described. Also, the reaction of titanocene methylidene trimethylphosphine complex with alkene sulfide and styrene sulfide will be presented.

Heterobinuclear µ-methylene-µ-methyl complexes C_(p2)Ti(µ-CH_2)( µ-CH_3)M(1,5-COD) have been prepared (M = Rh, Ir). X-ray crystallography showed that the methyl group of the complex was bonded to the rhodium and bridges to the titanium through an agostic bond. The ^(1)H,^(13)CNMR, IR spectra along with partial deuteration studies supported the structure in both solution and solid state. Activation of the agostic bond is demonstrated by the equilibration of the µ-CH_3 and µ-CH_2 groups. A nonlinear Arrhenius plot, an unusually large kinetic isotope effect (24(5)), and a large negative activation entropy (-64(3)eu) can be explained by the quantum-mechanical tunneling. Calculated rate constants with Bell-type barrier fitted well with the observed one. This equilibration was best explained by a 4e-4c mechanism (or σ bond metathesis) with the character of quantum-mechanical tunneling.

Heterobinuclear µ-methylene-µ-phenyl complexes were synthesized. Structural study of C_(p2)Ti(µ-CH_(2))(µ-p-Me_(2)NC_(6)H_(4))Rh(l,5-COD) showed that the two metal atoms are bridged by the methylene carbon and the ipso carbon of the p-N,N-dimethylarninophenyl group. The analogous structure of C_(p2))Ti(µ-CH_(2))(µ-o-MeOC_(6)H_(4))Rh(1,5-COD) has been verified by the differential NOE. The aromaticity of the phenyl group observed by ^(1)H NMR, was confirmed by the comparison of the C-C bond lengths in the crystallographic structure. The unusual downfield shifts of the ipso carbon in the ^(13)C NMR are assumed to be an indication of the interaction between the ipso carbon and electron-deficient titanium.

Titanium-platinum heterobinuclear µ-methylene complexes C_(p2)Ti(µ-CH_(2))(µ -X)Pt(Me)(PM_(2)Ph) have been prepared (X= Cl, Me). Structural studies indicate the following:(1) the Ti-CH2 bond possesses residual double bond character, (2) there is a dative Pt→Ti interaction which may be regarded as a π back donation from the platinum atom to the 'Ti=CH_(2)'' group, and (3) the µ-CH_3 group is bound to the titanium atom through a three-center, two-electron agostic bond.

Titanocene (η^(2)-thioformaldehyde)•PMe_3 was prepared from C_(p2)Ti=CH_(2)•PMe_3 and sulfur-containing organic compounds (e.g. alkene sulfide, triphenylphosphine sulfide) including elemental sulfur. Mechanistic studies utilizing trans-styrene sulfide-d_1 suggested the stepwise reaction to explain equimolar mixture of trans- and cis-styrene-d_1 as by-products. The product reacted with methyl iodide to produce cationic titanocene (η_(2)-thiomethoxymethyl) complex. Complexes having less coordinating anion like BF_4 or BPh_4 could be obtained through metathesis. Together with structural analyses, the further reactivities of the complexes have been explored.

The complex C_(p2)TiOCH_(2)CH(Ph)CH_2 was prepared from the compound C_(p2)Ti=CH_(2)-PMe_3 and styrene oxide. The product was characterized with ^(1)H-^(1)H correlated 2-dimensional NMR, selective decoupling of ^(1)H NMR, and differential NOE. Stereospecificity of deuterium in the product was lost when trans-styrene oxide-d_1 was allowed to react. Relative rates of the reaction were measured with varying substituents on the phenyl ring. Better linearity (r = -0.98, p^(+) = -0.79) was observed with σ_(p)^(+)than σ(r = -0.87, p = -1.26). The small magnitude of p^+ value and stereospecificity loss during the formation of product were best explained by the generation of biradicals, but partial generation of charge cannot be excluded. Carbonylation of the product followed by exposure to iodine yields the corresponding β-phenyl γ-lactone.