967 resultados para Pneumonia, Bacterial
Resumo:
INTRODUCTION : Bacterial translocation is the invasion of indigenous intestinal bacteria through the gut mucosa to normally sterile tissues and internal organs. Schistosomiasis may cause alterations in the immune system and damage to the intestines, portal system and mesenteric lymph nodes. This study investigated bacterial translocation and alterations in the intestinal microbiota and mucosa in schistosomiasis and splenectomized mice. METHODS : Forty female 35-day-old Swiss Webster mice were divided into the following four groups with 10 animals each: schistosomotic (ESF), splenectomized schistosomotic (ESEF), splenectomized (EF) and control (CF). Infection was achieved by introduction of 50 Schistosoma mansoni (SLM) cercariae through the skin. At 125 days after birth, half of the parasitized and unparasitized mice were subjected to splenectomy. Body weights were recorded for one week after splenectomy; then, the mice were euthanized to study bacterial translocation, microbiota composition and intestinal morphometry. RESULTS : We observed significant reductions in the weight increases in the EF, ESF and ESEF groups. There were increases of at least 1,000 CFU of intestinal microbiota bacteria in these groups compared with the CF. The EF, ESF and ESEF mice showed decreases in the heights and areas of villi and the total villus areas (perimeter). We observed frequent co-infections with various bacterial genera. CONCLUSIONS : The ESEF mice showed a higher degree of sepsis. This finding may be associated with a reduction in the immune response associated with the absence of the spleen and a reduction in nutritional absorption strengthened by both of these factors (Schistosoma infection and splenectomy).
Resumo:
ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC)].RESULTS: The most common location of ulceration was the toe (54%), followed by the plantar surface (27%) and dorsal portion (19%). A total of 89 bacterial isolates were obtained from 30 patients. The infections were predominantly due to Gram-positive bacteria and polymicrobial bacteremia. The most commonly isolated Gram-positive bacteria were Staphylococcus aureus, followed by Staphylococcus saprophyticus, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus pneumoniae. The most commonly isolated Gram-negative bacteria were Proteus spp. and Enterobacterspp., followed by Escherichia coli, Pseudomonasspp., and Citrobacterspp. Nine cases of methicillin-resistant Staphylococcus aureus (MRSA) had cefoxitin resistance, and among these MRSA isolates, 3 were resistant to vancomycin with the MIC technique. The antibiotic imipenem was the most effective against both Gram-positive and Gram-negative bacteria, and gentamicin was effective against Gram-negative bacteria.CONCLUSIONS: The present study confirmed the high prevalence of multidrug-resistant pathogens in diabetic foot ulcers. It is necessary to evaluate the different microorganisms infecting the wound and to know the antibiotic susceptibility patterns of the isolates from the infected wound. This knowledge is crucial for planning treatment with the appropriate antibiotics, reducing resistance patterns, and minimizing healthcare costs.
Resumo:
Haemophilus influenzae is one of the most important bacterial agents of otitis and sinusitis. H. influenzae type b (Hib) is one of the main causes of meningitis, pneumonia, and septicemia in nonvaccinated children under 6 years of age. The aims of this study were to determine the prevalence of H. influenzae and Hib oropharyngeal colonization prior to the onset of the Hib vaccination program in Brazil in previously healthy children and to assess the susceptibility profile of this microorganism to a selected group of antimicrobials that are used to treat acute respiratory infections. METHOD: Cultures of Haemophilus influenzae were made from oropharynx swabs from 987 children under 6 years of age who were enrolled in 29 day-care centers in Taubaté (a city of São Paulo state, Brazil) between July and December 1998. RESULTS: The prevalence of H. influenzae carriers was 17.4%, and only 5.5% of the strains were beta-lactamase producers. The prevalence of Hib carriers was high, 7.3% on average (range, 0.0 - 33.3%). CONCLUSIONS: The low prevalence of colonization by penicillin-resistant strains indicates that it is not necessary to substitute ampicilin or amoxicilin to effectively treat otitis and sinusitis caused by H. influenzae in Taubaté.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
Bacterial vaginosis (BV) is the worldwide leading vaginal disorder in women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, however, BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum and Peptoniphilus sp.. Currently, the role of G. vaginalis in the etiology of BV remains a matter of controversy. It is however known that, in BV patients, a biofilm is usually formed on the vaginal epithelium and G. vaginalis is typically the predominant species. So, the current paradigm is that the establishment of a biofilm plays a key role in the pathogenesis of BV. This review provides background on the influence of biofilm formation by G. vaginalis and other anaerobes in the polymicrobial etiology of BV, through its initial adhesion until biofilm formation and discusses the commensal and synergic interactions established between them to understand the phenotypic shift of G. vaginalis' biofilms into BV establishment.
Resumo:
Bacteria are central to human health and disease, but existing tools to edit microbial consortia are limited. For example, broad-spectrum antibiotics are unable to precisely manipulate bacterial communities. Bacteriophages can provide highly specific targeting of bacteria, but assembling well-defined phage cocktails solely with natural phages can be a time-, labor- and cost-intensive process. Here, we present a synthetic biology strategy to modulate phage host ranges by engineering phage genomes in Saccharomyces cerevisiae. We used this technology to redirect Escherichia coli phage scaffolds to target pathogenic Yersinia and Klebsiella bacteria, and conversely, Klebsiella phage scaffolds to target E. coli by modular swapping of phage tail components. The synthetic phages achieved efficient killing of their new target bacteria and were used to selectively remove bacteria from multi-species bacterial communities with cocktails based on common viral scaffolds. We envision this approach accelerating phage biology studies and enabling new technologies for bacterial population editing.
Resumo:
When pneumonia becomes a double congenital diaphragmatic hernia
Resumo:
Bacterial vaginosis (BV) is the most common genital tract infection in women during their reproductive years and it has been associated with serious health complications, such as preterm delivery and acquisition or transmission of several sexually transmitted agents. BV is characterized by a reduction of beneficial lactobacilli and a significant increase in number of anaerobic bacteria, including Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp. and Prevotella spp.. Being polymicrobial in nature, BV etiology remains unclear. However, it is certain that BV involves the presence of a thick vaginal multi-species biofilm, where G. vaginalis is the predominant species. Similar to what happens in many other biofilm-related infections, standard antibiotics, like metronidazole, are unable to fully eradicate the vaginal biofilm, which can explain the high recurrence rates of BV. Furthermore, antibiotic therapy can also cause a negative impact on the healthy vaginal microflora. These issues sparked the interest in developing alternative therapeutic strategies. This review provides a quick synopsis of the currently approved and available antibiotics for BV treatment while presenting an overview of novel strategies that are being explored for the treatment of this disorder, with special focus on natural compounds that are able to overcome biofilm-associated antibiotic resistance.
Resumo:
Vascular grafts are used to bypass damaged or diseased blood vessels. Bacterial cellulose (BC) has been studied for use as an off-the-shelf graft. Herein, we present a novel, cost-effective, method for the production of small caliber BC grafts with minimal processing or requirements. The morphology of the graft wall produced a tensile strength above that of native vessels, performing similarly to the current commercial alternatives. As a result of the production method, the luminal surface of the graft presents similar topography to that of native vessels. We have also studied the in vivo behavior of these BC graft in order to further demonstrate their viability. In these preliminary studies, 1 month patency was achieved, with the presence of neo-vessels and endothelial cells on the luminal surface of the graft.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clinica)
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
This work evaluated the effect of acetylated bacterial cellulose (ABC) substrates coated with urinary bladder matrix (UBM) on the behavior of Retinal Pigment Epithelium (RPE), as assessed by cell adhesion, proliferation and development of cell polarity exhibiting transepithelial resistance and polygonal shaped-cells with microvilli. Acetylation of bacterial cellulose (BC) generated a moderate hydrophobic surface (around 65°) while the adsorption of UBM onto these acetylated substrates did not affect significantly the surface hydrophobicity. The ABS substrates coated with UBM enabled the development of a cell phenotype closer to that of native RPE cells. These cells were able to express proteins essential for their cytoskeletal organization and metabolic function (ZO-1 and RPE65), while showing a polygonal shaped morphology with microvilli and a monolayer configuration. The coated ABC substrates were also characterized, exhibiting low swelling effect (between 1.52.0 swelling/mm3), high mechanical strength (2048 MPa) and non-pyrogenicity (2.12 EU/L). Therefore, the ABC substrates coated with UBM exhibit interesting features as potential cell carriers in RPE transplantation that ought to be further explored.
Resumo:
[Excerpt] Academic spin-offs, technological ventures born inside Universities, have increasingly strengthen the connections between the scholarship and the economy, by fostering the role of technology transfer and knowledge commercialization. This presentation will outline the major steps in taking an idea or a technology to market, growing the venture and aiming at securing a successful exit. Also, it will present BCTechnologies (Bacterial Cellulose Technologies), a spin-off from the University of Minho (Portugal). (...)